Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Sep 2025
]
Title: Person Identification from Egocentric Human-Object Interactions using 3D Hand Pose
Title: 从第一视角人-物体交互中的人体识别使用3D手部姿态
Abstract: Human-Object Interaction Recognition (HOIR) and user identification play a crucial role in advancing augmented reality (AR)-based personalized assistive technologies. These systems are increasingly being deployed in high-stakes, human-centric environments such as aircraft cockpits, aerospace maintenance, and surgical procedures. This research introduces I2S (Interact2Sign), a multi stage framework designed for unobtrusive user identification through human object interaction recognition, leveraging 3D hand pose analysis in egocentric videos. I2S utilizes handcrafted features extracted from 3D hand poses and per forms sequential feature augmentation: first identifying the object class, followed by HOI recognition, and ultimately, user identification. A comprehensive feature extraction and description process was carried out for 3D hand poses, organizing the extracted features into semantically meaningful categories: Spatial, Frequency, Kinematic, Orientation, and a novel descriptor introduced in this work, the Inter-Hand Spatial Envelope (IHSE). Extensive ablation studies were conducted to determine the most effective combination of features. The optimal configuration achieved an impressive average F1-score of 97.52% for user identification, evaluated on a bimanual object manipulation dataset derived from the ARCTIC and H2O datasets. I2S demonstrates state-of-the-art performance while maintaining a lightweight model size of under 4 MB and a fast inference time of 0.1 seconds. These characteristics make the proposed framework highly suitable for real-time, on-device authentication in security-critical, AR-based systems.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.