Computer Science > Graphics
[Submitted on 21 Sep 2025
]
Title: High Resolution UDF Meshing via Iterative Networks
Title: 通过迭代网络的高分辨率UDF网格化
Abstract: Unsigned Distance Fields (UDFs) are a natural implicit representation for open surfaces but, unlike Signed Distance Fields (SDFs), are challenging to triangulate into explicit meshes. This is especially true at high resolutions where neural UDFs exhibit higher noise levels, which makes it hard to capture fine details. Most current techniques perform within single voxels without reference to their neighborhood, resulting in missing surface and holes where the UDF is ambiguous or noisy. We show that this can be remedied by performing several passes and by reasoning on previously extracted surface elements to incorporate neighborhood information. Our key contribution is an iterative neural network that does this and progressively improves surface recovery within each voxel by spatially propagating information from increasingly distant neighbors. Unlike single-pass methods, our approach integrates newly detected surfaces, distance values, and gradients across multiple iterations, effectively correcting errors and stabilizing extraction in challenging regions. Experiments on diverse 3D models demonstrate that our method produces significantly more accurate and complete meshes than existing approaches, particularly for complex geometries, enabling UDF surface extraction at higher resolutions where traditional methods fail.
Submission history
From: Federico Stella [view email][v1] Sun, 21 Sep 2025 19:39:54 UTC (43,094 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.