Physics > Optics
[Submitted on 22 Sep 2025
]
Title: Beyond Fresnel Wave Surfaces: Off-Shell Photonic Density of States and Near-Fields in Isotropy-Broken Materials with Loss or Gain
Title: 超越菲涅尔波面:各向异性破坏材料中非壳光子态密度和近场
Abstract: Fresnel wave surfaces, or isofrequency light shells, provide a powerful framework for describing electromagnetic wave propagation in anisotropic media, yet their applicability is restricted to reciprocal, lossless materials and far-field radiation. This paper extends the concept by incorporating near-field effects and non-Hermitian responses arising in media with loss, gain, or non-reciprocity. Using the Om-potential approach to macroscopic electromagnetism, we reinterpret near fields as off-shell electromagnetic modes, in analogy with off-shell states in quantum field theory. We show that photonic density of states (PDOS) distributions near Fresnel surfaces acquire Lorentzian broadening in non-reciprocal media, directly linking this effect to the Beer-Bouguer-Lambert law of exponential attenuation or amplification. Furthermore, we demonstrate how Abraham and Minkowski momenta, locked to light shells in the far field, naturally shift to characterize source structures in the near-field regime. This unified treatment bridges the gap between sources and radiation, on-shell and off-shell modes, and reciprocal and non-reciprocal responses. The framework provides both fundamental insight into structured light and practical tools for the design of emitters and metamaterial platforms relevant to emerging technologies such as 6G communications, photonic density-of-states engineering, and non-Hermitian photonics.
Current browse context:
physics.optics
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.