Computer Science > Machine Learning
[Submitted on 22 Sep 2025
]
Title: Learning Neural Antiderivatives
Title: 学习神经反导数
Abstract: Neural fields offer continuous, learnable representations that extend beyond traditional discrete formats in visual computing. We study the problem of learning neural representations of repeated antiderivatives directly from a function, a continuous analogue of summed-area tables. Although widely used in discrete domains, such cumulative schemes rely on grids, which prevents their applicability in continuous neural contexts. We introduce and analyze a range of neural methods for repeated integration, including both adaptations of prior work and novel designs. Our evaluation spans multiple input dimensionalities and integration orders, assessing both reconstruction quality and performance in downstream tasks such as filtering and rendering. These results enable integrating classical cumulative operators into modern neural systems and offer insights into learning tasks involving differential and integral operators.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.