Computer Science > Computational Complexity
[Submitted on 22 Sep 2025
]
Title: Sketching approximations and LP approximations for finite CSPs are related
Title: 有限CSP的草图近似和LP近似是相关的
Abstract: We identify a connection between the approximability of CSPs in two models: (i) sublinear space streaming algorithms, and (ii) the basic LP relaxation. We show that whenever the basic LP admits an integrality gap, there is an $\Omega(\sqrt{n})$-space sketching lower bound. We also show that all existing linear space streaming lower bounds for Max-CSPs can be lifted to integrality gap instances for basic LPs. For bounded-degree graphs, by combining the distributed algorithm of Yoshida (STOC 2011) for approximately solving the basic LP with techniques described in Saxena, Singer, Sudan, and Velusamy (SODA 2025) for simulating a distributed algorithm by a sublinear space streaming algorithm on bounded-degree instances of Max-DICUT, it appears that there are sublinear space streaming algorithms implementing the basic LP, for every CSP. Based on our results, we conjecture the following dichotomy theorem: Whenever the basic LP admits an integrality gap, there is a linear space single-pass streaming lower bound, and when the LP is roundable, there is a sublinear space streaming algorithm.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.