Quantum Physics
[Submitted on 22 Sep 2025
]
Title: Distribution of non-Gaussian states in a deployed telecommunication fiber channel
Title: 非高斯态在部署的电信光纤信道中的分布
Abstract: Optical non-Gaussian states hold great promise as a pivotal resource for advanced optical quantum information processing and fault-tolerant long-distance quantum communication. Establishing their faithful transmission in a real-world communication channel, therefore, marks an important milestone. In this study, we experimentally demonstrate the distribution of such non-Gaussian states in a functioning telecommunication channel that connects separate buildings within the DTU campus premises. We send photon-subtracted squeezed states, exhibiting pronounced Wigner negativity, through 300 m of deployed optical fibers to a distant building. Using quantum homodyne tomography, we fully characterize the states upon arrival. Our results show the survival of the Wigner function negativity after transmission when correcting for detection losses, indicating that the established link can potentially facilitate the violation of Bell's inequality and enable quantum steering. This achievement not only validates the practical feasibility of distributing non-Gaussian states in real-world settings, but also provides an exciting impetus towards realizing fully coherent quantum networks for high-dimensional, continuous-variable quantum information processing.
Submission history
From: Jonas Schou Neergaard-Nielsen [view email][v1] Mon, 22 Sep 2025 17:55:47 UTC (5,228 KB)
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.