Computer Science > Data Structures and Algorithms
[Submitted on 23 Sep 2025
]
Title: Precoloring extension with demands on paths
Title: 带有路径需求的预着色扩展
Abstract: Let $G$ be a graph with a set of precolored vertices, and let us be given an integer distance parameter $d$ and a set of integer demands $d_1,\dots,d_c$. The Distance Precoloring Extension with Demands (DPED) problem is to compute a vertex $c$-coloring of $G$ such that the following three conditions hold: (i) the resulting coloring respects the colors of the precolored vertices, (ii) the distance of two vertices of the same color is at least $d$, and (iii) the number of vertices colored by color $i$ is exactly $d_i$. This problem is motivated by a program scheduling in commercial broadcast channels with constraints on content repetition and placement, which leads precisely to the DPED problem for paths. In this paper, we study DPED on paths and present a polynomial time exact algorithm when precolored vertices are restricted to the two ends of the path and devise an approximation algorithm for DPED with an additive approximation factor polynomially bounded by $d$ and the number of precolored vertices. Then, we prove that the Distance Precoloring Extension problem on paths, a less restrictive version of DPED without the demand constraints, and then DPED itself, is NP-complete. Motivated by this result, we further study the parameterized complexity of DPED on paths. We establish that the DPED problem on paths is $W[1]$-hard when parameterized by the number of colors and the distance. On the positive side, we devise a fixed parameter tractable (FPT) algorithm for DPED on paths when the number of colors, the distance, and the number of precolored vertices are considered as the parameters. Moreover, we prove that Distance Precoloring Extension is FPT parameterized by the distance. As a byproduct, we also obtain several results for the Distance List Coloring problem on paths.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.