Electrical Engineering and Systems Science > Signal Processing
[Submitted on 16 Sep 2025
]
Title: A Measurement Report Data-Driven Framework for Localized Statistical Channel Modeling
Title: 一种用于局部统计信道建模的测量报告数据驱动框架
Abstract: Localized statistical channel modeling (LSCM) is crucial for effective performance evaluation in digital twin-assisted network optimization. Solely relying on the multi-beam reference signal receiving power (RSRP), LSCM aims to model the localized statistical propagation environment by estimating the channel angular power spectrum (APS). However, existing methods rely heavily on drive test data with high collection costs and limited spatial coverage. In this paper, we propose a measurement report (MR) data-driven framework for LSCM, exploiting the low-cost and extensive collection of MR data. The framework comprises two novel modules. The MR localization module addresses the issue of missing locations in MR data by introducing a semi-supervised method based on hypergraph neural networks, which exploits multi-modal information via distance-aware hypergraph modeling and hypergraph convolution for location extraction. To enhance the computational efficiency and solution robustness, LSCM operates at the grid level. Compared to independently constructing geographically uniform grids and estimating channel APS, the joint grid construction and channel APS estimation module enhances robustness in complex environments with spatially non-uniform data by exploiting their correlation. This module alternately optimizes grid partitioning and APS estimation using clustering and improved sparse recovery for the ill-conditioned measurement matrix and incomplete observations. Through comprehensive experiments on a real-world MR dataset, we demonstrate the superior performance and robustness of our framework in localization and channel modeling.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.