Computer Science > Machine Learning
[Submitted on 10 Sep 2025
(v1)
, last revised 25 Sep 2025 (this version, v2)]
Title: S$^2$Transformer: Scalable Structured Transformers for Global Station Weather Forecasting
Title: S$^2$变压器:用于全球气象预报的可扩展结构变压器
Abstract: Global Station Weather Forecasting (GSWF) is a key meteorological research area, critical to energy, aviation, and agriculture. Existing time series forecasting methods often ignore or unidirectionally model spatial correlation when conducting large-scale global station forecasting. This contradicts the intrinsic nature underlying observations of the global weather system, limiting forecast performance. To address this, we propose a novel Spatial Structured Attention Block in this paper. It partitions the spatial graph into a set of subgraphs and instantiates Intra-subgraph Attention to learn local spatial correlation within each subgraph, and aggregates nodes into subgraph representations for message passing among the subgraphs via Inter-subgraph Attention -- considering both spatial proximity and global correlation. Building on this block, we develop a multiscale spatiotemporal forecasting model S$^2$Transformer by progressively expanding subgraph scales. The resulting model is both scalable and able to produce structured spatial correlation, and meanwhile, it is easy to implement. The experimental results show that it can achieve performance improvements up to 16.8% over time series forecasting baselines at low running costs.
Submission history
From: Hongyi Chen [view email][v1] Wed, 10 Sep 2025 05:33:28 UTC (2,193 KB)
[v2] Thu, 25 Sep 2025 03:12:08 UTC (2,193 KB)
Current browse context:
cs.LG
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.