Physics > Medical Physics
[Submitted on 24 Sep 2025
]
Title: GPU-accelerated FREDopt package for simultaneous dose and LETd proton radiotherapy plan optimization via superiorization methods
Title: 基于GPU加速的FREDopt软件包,通过超优化方法实现质子放疗计划的剂量和LETd同时优化
Abstract: This study presents FREDopt, a newly developed GPU-accelerated open-source optimization software for simultaneous proton dose and dose-averaged LET (LETd) optimization in IMPT treatment planning. FREDopt was implemented entirely in Python, leveraging CuPy for GPU acceleration and incorporating fast Monte Carlo (MC) simulations from the FRED code. The treatment plan optimization workflow includes pre-optimization and optimization, the latter equipped with a novel superiorization of feasibility-seeking algorithms. Feasibility-seeking requires finding a point that satisfies prescribed constraints. Superiorization interlaces computational perturbations into iterative feasibility-seeking steps to steer them toward a superior feasible point, replacing the need for costly full-fledged constrained optimization. The method was validated on two treatment plans of patients treated in a clinical proton therapy center, with dose and LETd distributions compared before and after reoptimization. Simultaneous dose and LETd optimization using FREDopt led to a substantial reduction of LETd and (dose)x(LETd) in organs at risk (OARs) while preserving target dose conformity. Computational performance evaluation showed execution times of 14-50 minutes, depending on the algorithm and target volume size-satisfactory for clinical and research applications while enabling further development of the well-tested, documented open-source software.
Current browse context:
physics.med-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.