Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > quant-ph > arXiv:2509.20183

Help | Advanced Search

Quantum Physics

arXiv:2509.20183 (quant-ph)
[Submitted on 24 Sep 2025 ]

Title: Dequantization and Hardness of Spectral Sum Estimation

Title: 去量化与谱和估计的难度

Authors:Roman Edenhofer, Atsuya Hasegawa, François Le Gall
Abstract: We give new dequantization and hardness results for estimating spectral sums of matrices, such as the log-determinant. Recent quantum algorithms have demonstrated that the logarithm of the determinant of sparse, well-conditioned, positive matrices can be approximated to $\varepsilon$-relative accuracy in time polylogarithmic in the dimension $N$, specifically in time $\mathrm{poly}(\mathrm{log}(N), s, \kappa, 1/\varepsilon)$, where $s$ is the sparsity and $\kappa$ the condition number of the input matrix. We provide a simple dequantization of these techniques that preserves the polylogarithmic dependence on the dimension. Our classical algorithm runs in time $\mathrm{polylog}(N)\cdot s^{O(\sqrt{\kappa}\log \kappa/\varepsilon)}$ which constitutes an exponential improvement over previous classical algorithms in certain parameter regimes. We complement our classical upper bound with $\mathsf{DQC1}$-completeness results for estimating specific spectral sums such as the trace of the inverse and the trace of matrix powers for log-local Hamiltonians, with parameter scalings analogous to those of known quantum algorithms. Assuming $\mathsf{BPP}\subsetneq\mathsf{DQC1}$, this rules out classical algorithms with the same scalings. It also resolves a main open problem of Cade and Montanaro (TQC 2018) concerning the complexity of Schatten-$p$ norm estimation. We further analyze a block-encoding input model, where instead of a classical description of a sparse matrix, we are given a block-encoding of it. We show $\mathsf{DQC}1$-completeness in a very general way in this model for estimating $\mathrm{tr}[f(A)]$ whenever $f$ and $f^{-1}$ are sufficiently smooth. We conclude our work with $\mathsf{BQP}$-hardness and $\mathsf{PP}$-completeness results for high-accuracy log-determinant estimation.
Abstract: 我们给出了对矩阵谱和估计的新去量化和难度结果,例如对数行列式。最近的量子算法表明,稀疏、条件良好、正定矩阵的行列式的对数可以在维度$N$的多项对数时间内以$\varepsilon$相对精度近似,具体时间复杂度为$\mathrm{poly}(\mathrm{log}(N), s, \kappa, 1/\varepsilon)$,其中$s$是稀疏性,$\kappa$是输入矩阵的条件数。我们提供了一种简单的这些技术的去量化方法,该方法保留了与维度的多项对数依赖关系。我们的经典算法运行时间为$\mathrm{polylog}(N)\cdot s^{O(\sqrt{\kappa}\log \kappa/\varepsilon)}$,这在某些参数范围内相对于之前的经典算法有指数级的改进。我们通过针对特定谱和估计的$\mathsf{DQC1}$完全性结果来补充我们的经典上界,例如对数局部哈密顿量的逆矩阵迹和矩阵幂迹,其参数缩放与已知量子算法的参数缩放类似。 假设$\mathsf{BPP}\subsetneq\mathsf{DQC1}$,这排除了具有相同缩放比例的经典算法。 它还解决了 Cade 和 Montanaro(TQC 2018)关于 Schatten-$p$范数估计复杂性的主要开放问题。 我们进一步分析了一种块编码输入模型,在这种模型中,我们不是获得稀疏矩阵的经典描述,而是获得它的块编码。 我们在这个模型中以一种非常普遍的方式证明了$\mathsf{DQC}1$完全性,当$\mathrm{tr}[f(A)]$、$f$和$f^{-1}$具有足够的平滑性时。 我们最后得出高精度对数行列式估计的$\mathsf{BQP}$-难性和$\mathsf{PP}$-完全性结果。
Subjects: Quantum Physics (quant-ph) ; Computational Complexity (cs.CC); Data Structures and Algorithms (cs.DS)
Cite as: arXiv:2509.20183 [quant-ph]
  (or arXiv:2509.20183v1 [quant-ph] for this version)
  https://doi.org/10.48550/arXiv.2509.20183
arXiv-issued DOI via DataCite (pending registration)

Submission history

From: Roman Edenhofer [view email]
[v1] Wed, 24 Sep 2025 14:44:53 UTC (42 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
quant-ph
< prev   |   next >
new | recent | 2025-09
Change to browse by:
cs
cs.CC
cs.DS

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号