Quantum Physics
[Submitted on 25 Sep 2025
]
Title: A Review on Quantum Circuit Optimization using ZX-Calculus
Title: 基于ZX-演算的量子电路优化综述
Abstract: Quantum computing promises significant speed-ups for certain algorithms but the practical use of current noisy intermediate-scale quantum (NISQ) era computers remains limited by resources constraints (e.g., noise, qubits, gates, and circuit depth). Quantum circuit optimization is a key mitigation strategy. In this context, ZX-calculus has emerged as an alternative framework that allows for semantics-preserving quantum circuit optimization. We review ZX-based optimization of quantum circuits, categorizing them by optimization techniques, target metrics and intended quantum computing architecture. In addition, we outline critical challenges and future research directions, such as multi-objective optimization, scalable algorithms, and enhanced circuit extraction methods. This survey is valuable for researchers in both combinatorial optimization and quantum computing. For researchers in combinatorial optimization, we provide the background to understand a new challenging combinatorial problem: ZX-based quantum circuit optimization. For researchers in quantum computing, we classify and explain existing circuit optimization techniques.
Submission history
From: Tobias Michael Fischbach [view email][v1] Thu, 25 Sep 2025 01:48:07 UTC (47 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.