Computer Science > Robotics
[Submitted on 30 Sep 2025
]
Title: Real-time Velocity Profile Optimization for Time-Optimal Maneuvering with Generic Acceleration Constraints
Title: 实时速度剖面优化用于具有通用加速度约束的最优时间机动
Abstract: The computation of time-optimal velocity profiles along prescribed paths, subject to generic acceleration constraints, is a crucial problem in robot trajectory planning, with particular relevance to autonomous racing. However, the existing methods either support arbitrary acceleration constraints at high computational cost or use conservative box constraints for computational efficiency. We propose FBGA, a new \underline{F}orward-\underline{B}ackward algorithm with \underline{G}eneric \underline{A}cceleration constraints, which achieves both high accuracy and low computation time. FBGA operates forward and backward passes to maximize the velocity profile in short, discretized path segments, while satisfying user-defined performance limits. Tested on five racetracks and two vehicle classes, FBGA handles complex, non-convex acceleration constraints with custom formulations. Its maneuvers and lap times closely match optimal control baselines (within $0.11\%$-$0.36\%$), while being up to three orders of magnitude faster. FBGA maintains high accuracy even with coarse discretization, making it well-suited for online multi-query trajectory planning. Our open-source \texttt{C++} implementation is available at: https://anonymous.4open.science/r/FB_public_RAL.
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.