Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2510.01781

Help | Advanced Search

Mathematics > Number Theory

arXiv:2510.01781 (math)
[Submitted on 2 Oct 2025 ]

Title: Primes of the form $ax+by$ in certain intervals with small solutions

Title: 形如$ax+by$的素数在某些区间内具有小解

Authors:Yuchen Ding, Takao Komatsu, Honghu Liu
Abstract: Let $1<a<b$ be two relatively prime integers and $\mathbb{Z}_{\ge 0}$ the set of non-negative integers. For any non-negative integer $\ell$, denote by $g_{\ell,a,b}$ the largest integer $n$ such that the equation $$n=ax+by,\quad (x,y)\in\mathbb{Z}_{\ge 0}^{2} \quad (1)$$ has at most $\ell$ solutions. Let $\pi_{\ell,a,b}$ be the number of primes $p\leq g_{\ell,a,b}$ having at least $\ell+1$ solutions for (1) and $\pi(x)$ the number of primes not exceeding $x$. In this article, we prove that for a fixed integer $a\ge 3$ with $\gcd(a,b)=1$, $$ \pi_{\ell,a,b}=\left(\frac{a-2}{2(\ell a+a-1)}+o(1)\right)\pi\bigl(g_{\ell,a,b}\bigr)\quad(\text{as}~ b\to\infty). $$ For any non-negative $\ell$ and relatively prime integers $a,b$, satisfying $e^{\ell+1}\leq a<b$, we show that \begin{equation*} \pi_{\ell,a,b}>0.005\cdot \frac{1}{\ell+1}\frac{g_{\ell,a,b}}{\log g_{\ell,a,b}}. \end{equation*} Let $\pi_{\ell,a,b}^{*}$ be the number of primes $p\leq g_{\ell,a,b}$ having at most $\ell$ solutions for (1). For an integer $a\ge 3$ and a large sufficiently integer $b$ with $\gcd(a,b)=1$, we also prove that $$ \pi^{*}_{\ell,a,b}>\frac{(2\ell+1)a}{2(\ell a+a-1)}\frac{g_{\ell,a,b}}{\log g_{\ell,a,b}}. $$ Moreover, if $\ell<a<b$ with $\gcd(a,b)=1$, then we have \begin{equation*} \pi^{*}_{\ell,a,b}>\frac{\ell+0.02}{\ell+1}\frac{g_{\ell,a,b}}{\log g_{\ell,a,b}}. \end{equation*} These results generalize the previous ones of Chen and Zhu (2025), who established the results for the case $\ell=0$.
Abstract: 设$1<a<b$为两个互质的整数,$\mathbb{Z}_{\ge 0}$为非负整数的集合。 对于任何非负整数$\ell$,记$g_{\ell,a,b}$为最大的整数$n$,使得方程$$n=ax+by,\quad (x,y)\in\mathbb{Z}_{\ge 0}^{2} \quad (1)$$最多有$\ell$个解。 设$\pi_{\ell,a,b}$为满足方程(1)至少有$\ell+1$个解的素数$p\leq g_{\ell,a,b}$的个数,$\pi(x)$为不超过$x$的素数的个数。 在本文中,我们证明对于一个固定的整数$a\ge 3$且$\gcd(a,b)=1$,$$ \pi_{\ell,a,b}=\left(\frac{a-2}{2(\ell a+a-1)}+o(1)\right)\pi\bigl(g_{\ell,a,b}\bigr)\quad(\text{as}~ b\to\infty). $$。对于任何非负的$\ell$和互质的整数$a,b$,满足$e^{\ell+1}\leq a<b$,我们证明\begin{equation*} \pi_{\ell,a,b}>0.005\cdot \frac{1}{\ell+1}\frac{g_{\ell,a,b}}{\log g_{\ell,a,b}}. \end{equation*}。设$\pi_{\ell,a,b}^{*}$是满足 (1) 的解最多为$\ell$的素数$p\leq g_{\ell,a,b}$的个数。 对于整数$a\ge 3$和足够大的整数$b$满足$\gcd(a,b)=1$,我们还证明了$$ \pi^{*}_{\ell,a,b}>\frac{(2\ell+1)a}{2(\ell a+a-1)}\frac{g_{\ell,a,b}}{\log g_{\ell,a,b}}. $$。此外,如果$\ell<a<b$满足$\gcd(a,b)=1$,那么我们有\begin{equation*} \pi^{*}_{\ell,a,b}>\frac{\ell+0.02}{\ell+1}\frac{g_{\ell,a,b}}{\log g_{\ell,a,b}}. \end{equation*}这些结果推广了 Chen 和 Zhu(2025)之前的成果,他们建立了当$\ell=0$时的结果。
Subjects: Number Theory (math.NT)
Cite as: arXiv:2510.01781 [math.NT]
  (or arXiv:2510.01781v1 [math.NT] for this version)
  https://doi.org/10.48550/arXiv.2510.01781
arXiv-issued DOI via DataCite

Submission history

From: Yuchen Ding [view email]
[v1] Thu, 2 Oct 2025 08:19:59 UTC (14 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
license icon view license
Current browse context:
math.NT
< prev   |   next >
new | recent | 2025-10
Change to browse by:
math

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号