High Energy Physics - Experiment
[Submitted on 2 Oct 2025
]
Title: Machine Learning for Event Reconstruction in the CMS Phase-2 High Granularity Calorimeter Endcap
Title: 用于CMS Phase-2高粒度量能器端盖事件重建的机器学习
Abstract: The high-luminosity era of the LHC will offer greatly increased number of events for more precise Standard Model measurements and Beyond Standard Model searches, but will also pose unprecedented challenges to the detectors. To meet these challenges, the CMS detector will undergo several upgrades, including the replacement of the current endcap calorimeters with a novel High-Granularity Calorimeter (HGCAL). To make optimal use of this innovative detector, new and original algorithms are being devised. A dedicated reconstruction framework, The Iterative Clustering (TICL), is being developed within the CMS Software (CMSSW). This new framework is designed to fully exploit the high spatial resolution and precise timing information provided by HGCAL. Several key ingredients of the object reconstruction chain already rely on Machine Learning (ML) techniques and their usage is expected to further develop in the future. The existing reconstruction strategies will be presented stressing the role played by ML techniques to exploit the information provided by the detector. The areas where ML techniques are expected to play a role in the future developments will be also discussed.
Current browse context:
hep-ex
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.