Computer Science > Information Theory
[Submitted on 3 Oct 2025
]
Title: Tradeoffs on the volume of fault-tolerant circuits
Title: 容错电路的体积权衡
Abstract: Dating back to the seminal work of von Neumann [von Neumann, Automata Studies, 1956], it is known that error correcting codes can overcome faulty circuit components to enable robust computation. Choosing an appropriate code is non-trivial as it must balance several requirements. Increasing the rate of the code reduces the relative number of redundant bits used in the fault-tolerant circuit, while increasing the distance of the code ensures robustness against faults. If the rate and distance were the only concerns, we could use asymptotically optimal codes as is done in communication settings. However, choosing a code for computation is challenging due to an additional requirement: The code needs to facilitate accessibility of encoded information to enable computation on encoded data. This seems to conflict with having large rate and distance. We prove that this is indeed the case, namely that a code family cannot simultaneously have constant rate, growing distance and short-depth gadgets to perform encoded CNOT gates. As a consequence, achieving good rate and distance may necessarily entail accepting very deep circuits, an undesirable trade-off in certain architectures and applications.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.