Condensed Matter > Statistical Mechanics
[Submitted on 7 Oct 2025
]
Title: Full counting statistics of electron-photon hybrid systems: Joint statistics and fluctuation symmetry
Title: 电子-光子混合系统的完整计数统计:联合统计和涨落对称性
Abstract: Electron-photon hybrid systems serve as ideal light-matter interfaces with broad applications in quantum technologies. These systems are typically operated dynamically under nonequilibrium conditions, giving rise to coupled electronic and photonic currents. Understanding the joint fluctuation behavior of these currents is essential for assessing the performance of light-matter interfaces that rely on electron-photon correlations. Here, we investigate the full counting statistics of coupled electronic and photonic currents in an experimentally feasible hybrid system composed of a double quantum dot coupled to an optical cavity. We employ the framework of quantum Lindblad master equation which is augmented with both electronic and photonic counting fields to derive their joint cumulant generating function--a treatment that differs significantly from existing studies, which typically focus on either electron or photon statistics separately. We reveal that the ratio between photonic and electronic currents, as well as their variances, can deviate from an expected quadratic scaling law in the large electron-photon coupling regime. Furthermore, we demonstrate that conventional modelings of photonic dissipation channels in quantum master equations must be modified to ensure that the joint cumulant generating function satisfies the fluctuation symmetry enforced by the fluctuation theorem. Our results advance the understanding of joint fluctuation behaviors in electron-photon hybrid systems and may inform the design of efficient quantum light-matter interfaces.
Current browse context:
cond-mat.stat-mech
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.