Mathematics > Numerical Analysis
[Submitted on 16 Oct 2025
]
Title: Fast spectral separation method for kinetic equation with anisotropic non-stationary collision operator retaining micro-model fidelity
Title: 用于各向异性非稳态碰撞算子的快速谱分离方法,保留微观模型保真度
Abstract: We present a generalized, data-driven collisional operator for one-component plasmas, learned from molecular dynamics simulations, to extend the collisional kinetic model beyond the weakly coupled regime. The proposed operator features an anisotropic, non-stationary collision kernel that accounts for particle correlations typically neglected in classical Landau formulations. To enable efficient numerical evaluation, we develop a fast spectral separation method that represents the kernel as a low-rank tensor product of univariate basis functions. This formulation admits an $O(N \log N)$ algorithm via fast Fourier transforms and preserves key physical properties, including discrete conservation laws and the H-theorem, through a structure-preserving central difference discretization. Numerical experiments demonstrate that the proposed model accurately captures plasma dynamics in the moderately coupled regime beyond the standard Landau model while maintaining high computational efficiency and structure-preserving properties.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.