Computer Science > Human-Computer Interaction
[Submitted on 7 Sep 2025
]
Title: A Real-Time BCI for Stroke Hand Rehabilitation Using Latent EEG Features from Healthy Subjects
Title: 基于健康受试者潜在脑电特征的中风手部康复实时脑机接口
Abstract: This study presents a real-time, portable brain-computer interface (BCI) system designed to support hand rehabilitation for stroke patients. The system combines a low cost 3D-printed robotic exoskeleton with an embedded controller that converts brain signals into physical hand movements. EEG signals are recorded using a 14-channel Emotiv EPOC+ headset and processed through a supervised convolutional autoencoder (CAE) to extract meaningful latent features from single-trial data. The model is trained on publicly available EEG data from healthy individuals (WAY-EEG-GAL dataset), with electrode mapping adapted to match the Emotiv headset layout. Among several tested classifiers, Ada Boost achieved the highest accuracy (89.3%) and F1-score (0.89) in offline evaluations. The system was also tested in real time on five healthy subjects, achieving classification accuracies between 60% and 86%. The complete pipeline - EEG acquisition, signal processing, classification, and robotic control - is deployed on an NVIDIA Jetson Nano platform with a real-time graphical interface. These results demonstrate the system's potential as a low-cost, standalone solution for home-based neurorehabilitation.
Current browse context:
cs.HC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.