Computer Science > Computers and Society
[Submitted on 8 Oct 2025
(v1)
, last revised 22 Oct 2025 (this version, v2)]
Title: Large Language Models in Architecture Studio: A Framework for Learning Outcomes
Title: 大型语言模型在建筑工作室中的应用:学习成果的框架
Abstract: The study explores the role of large language models (LLMs) in the context of the architectural design studio, understood as the pedagogical core of architectural education. Traditionally, the studio has functioned as an experiential learning space where students tackle design problems through reflective practice, peer critique, and faculty guidance. However, the integration of artificial intelligence (AI) in this environment has been largely focused on form generation, automation, and representation-al efficiency, neglecting its potential as a pedagogical tool to strengthen student autonomy, collaboration, and self-reflection. The objectives of this research were: (1) to identify pedagogical challenges in self-directed, peer-to-peer, and teacher-guided learning processes in architecture studies; (2) to propose AI interventions, particularly through LLM, that contribute to overcoming these challenges; and (3) to align these interventions with measurable learning outcomes using Bloom's taxonomy. The findings show that the main challenges include managing student autonomy, tensions in peer feedback, and the difficulty of balancing the transmission of technical knowledge with the stimulation of creativity in teaching. In response to this, LLMs are emerging as complementary agents capable of generating personalized feedback, organizing collaborative interactions, and offering adaptive cognitive scaffolding. Furthermore, their implementation can be linked to the cognitive levels of Bloom's taxonomy: facilitating the recall and understanding of architectural concepts, supporting application and analysis through interactive case studies, and encouraging synthesis and evaluation through hypothetical design scenarios.
Submission history
From: Juan David Salazar Rodriguez [view email][v1] Wed, 8 Oct 2025 02:51:22 UTC (8,981 KB)
[v2] Wed, 22 Oct 2025 06:47:37 UTC (9,047 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.