Computer Science > Machine Learning
            [Submitted on 17 Oct 2025
            
            
            
            ]
          
          Title: Near-Equilibrium Propagation training in nonlinear wave systems
Title: 非平衡传播训练在非线性波系统中
Abstract: Backpropagation learning algorithm, the workhorse of modern artificial intelligence, is notoriously difficult to implement in physical neural networks. Equilibrium Propagation (EP) is an alternative with comparable efficiency and strong potential for in-situ training. We extend EP learning to both discrete and continuous complex-valued wave systems. In contrast to previous EP implementations, our scheme is valid in the weakly dissipative regime, and readily applicable to a wide range of physical settings, even without well defined nodes, where trainable inter-node connections can be replaced by trainable local potential. We test the method in driven-dissipative exciton-polariton condensates governed by generalized Gross-Pitaevskii dynamics. Numerical studies on standard benchmarks, including a simple logical task and handwritten-digit recognition, demonstrate stable convergence, establishing a practical route to in-situ learning in physical systems in which system control is restricted to local parameters.
          Current browse context: 
        
          cs.LG
          
          
          
          
          
          
            
            
              Change to browse by:
              
            
            
          
        References & Citations
Bibliographic and Citation Tools
            Bibliographic Explorer (What is the Explorer?)
          
        
            Connected Papers (What is Connected Papers?)
          
        
            Litmaps (What is Litmaps?)
          
        
            scite Smart Citations (What are Smart Citations?)
          
        Code, Data and Media Associated with this Article
            alphaXiv (What is alphaXiv?)
          
        
            CatalyzeX Code Finder for Papers (What is CatalyzeX?)
          
        
            DagsHub (What is DagsHub?)
          
        
            Gotit.pub (What is GotitPub?)
          
        
            Hugging Face (What is Huggingface?)
          
        
            Papers with Code (What is Papers with Code?)
          
        
            ScienceCast (What is ScienceCast?)
          
        Demos
Recommenders and Search Tools
              Influence Flower (What are Influence Flowers?)
            
          
              CORE Recommender (What is CORE?)
            
          
              IArxiv Recommender
              (What is IArxiv?)
            
          arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.
 
  