Computer Science > Human-Computer Interaction
[Submitted on 19 Oct 2025
]
Title: Integrating Metaverse Technologies in Medical Education: Examining Acceptance Factors Among Current and Future Healthcare Providers
Title: 将元宇宙技术整合到医学教育中:考察当前和未来医疗保健提供者的接受因素
Abstract: This study investigates behavioral intention to use healthcare metaverse platforms among medical students and physicians in Turkey, where such technologies are in early stages of adoption. A multi-theoretical research model was developed by integrating constructs from the Innovation Diffusion Theory, Embodied Social Presence Theory, Interaction Equivalency Theorem and Technology Acceptance Model. Data from 718 participants were analyzed using partial least squares structural equation modeling. Results show that satisfaction, perceived usefulness, perceived ease of use, learner interactions, and technology readiness significantly enhance adoption, while technology anxiety and complexity have negative effects. Learner learner and learner teacher interactions strongly predict satisfaction, which subsequently increases behavioral intention. Perceived ease of use fully mediates the relationship between technology anxiety and perceived usefulness. However, technology anxiety does not significantly moderate the effects of perceived usefulness or ease of use on behavioral intention. The model explains 71.8% of the variance in behavioral intention, indicating strong explanatory power. The findings offer practical implications for educators, curriculum designers, and developers aiming to integrate metaverse platforms into healthcare training in digitally transitioning educational systems.
Submission history
From: Gulsah Hancerliogullari Koksalmis [view email][v1] Sun, 19 Oct 2025 20:03:01 UTC (773 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.