Computer Science > Computers and Society
[Submitted on 20 Oct 2025
]
Title: The Integration of Artificial Intelligence in Undergraduate Medical Education in Spain: Descriptive Analysis and International Perspectives
Title: 西班牙人工智能在本科医学教育中的应用:描述性分析与国际视角
Abstract: AI is transforming medical practice and redefining the competencies that future healthcare professionals need to master. Despite international recommendations, the integration of AI into Medicine curricula in Spain had not been systematically evaluated until now. A cross-sectional study (July-September 2025) including Spanish universities offering the official degree in Medicine, according to the 'Register of Universities, Centers and Degrees (Registro de Universidades, Centros y T\'itulos RUCT)'. Curricula and publicly available institutional documentation were reviewed to identify courses and competencies related to AI in the 2025-2026 academic year. The analysis was performed using descriptive statistics. Of the 52 universities analyzed, ten (19.2%) offer specific AI courses, whereas 36 (69.2%) include no related content. Most of the identified courses are elective, with a credit load ranging from three to six ECTS, representing on average 1.17% of the total 360 credits of the degree. The University of Ja\'en is the only institution offering a compulsory course with AI content. The territorial analysis reveals marked disparities: Andalusia leads with 55.5% of its universities incorporating AI training, while several communities lack any initiative in this area. The integration of AI into the medical degree in Spain is incipient, fragmented, and uneven, with a low weight in ECTS. The limited training load and predominance of elective courses restrict the preparation of future physicians to practice in a healthcare environment increasingly mediated by AI. The findings support the establishment of minimum standards and national monitoring of indicators.
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.