High Energy Physics - Phenomenology
[Submitted on 20 Oct 2025
]
Title: QINNs: Quantum-Informed Neural Networks
Title: QINNs:量子信息神经网络
Abstract: Classical deep neural networks can learn rich multi-particle correlations in collider data, but their inductive biases are rarely anchored in physics structure. We propose quantum-informed neural networks (QINNs), a general framework that brings quantum information concepts and quantum observables into purely classical models. While the framework is broad, in this paper, we study one concrete realisation that encodes each particle as a qubit and uses the Quantum Fisher Information Matrix (QFIM) as a compact, basis-independent summary of particle correlations. Using jet tagging as a case study, QFIMs act as lightweight embeddings in graph neural networks, increasing model expressivity and plasticity. The QFIM reveals distinct patterns for QCD and hadronic top jets that align with physical expectations. Thus, QINNs offer a practical, interpretable, and scalable route to quantum-informed analyses, that is, tomography, of particle collisions, particularly by enhancing well-established deep learning approaches.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.