Computer Science > Human-Computer Interaction
[Submitted on 20 Oct 2025
]
Title: Presenting Large Language Models as Companions Affects What Mental Capacities People Attribute to Them
Title: 将大型语言模型呈现为伙伴会影响人们赋予它们的心理能力
Abstract: How does messaging about about large language models (LLMs) in public discourse influence the way people think about and interact with these models? To answer this question, we randomly assigned participants (N = 470) to watch a short informational video presenting LLMs as either machines, tools, or companions -- or to watch no video. We then assessed how strongly they believed LLMs to possess various mental capacities, such as the ability have intentions or remember things. We found that participants who watched the companion video reported believing that LLMs more fully possessed these capacities than did participants in other groups. In a follow-up study (N = 604), we replicated these findings and found nuanced effects on how these videos impact people's reliance on LLM-generated responses when seeking out factual information. Together, these studies highlight the impact of messaging about AI -- beyond technical advances in AI -- to generate broad societal impact.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.