Quantitative Finance > Pricing of Securities
[Submitted on 20 Oct 2025
]
Title: Semi-analytical pricing of American options with hybrid dividends via integral equations and the GIT method
Title: 基于积分方程和GIT方法的混合股息美式期权半解析定价
Abstract: This paper introduces a semi-analytical method for pricing American options on assets (stocks, ETFs) that pay discrete and/or continuous dividends. The problem is notoriously complex because discrete dividends create abrupt price drops and affect the optimal exercise timing, making traditional continuous-dividend models unsuitable. Our approach utilizes the Generalized Integral Transform (GIT) method introduced by the author and his co-authors in a number of papers, which transforms the pricing problem from a complex partial differential equation with a free boundary into an integral Volterra equation of the second or first kind. In this paper we illustrate this approach by considering a popular GBM model that accounts for discrete cash and proportional dividends using Dirac delta functions. By reframing the problem as an integral equation, we can sequentially solve for the option price and the early exercise boundary, effectively handling the discontinuities caused by the dividends. Our methodology provides a powerful alternative to standard numerical techniques like binomial trees or finite difference methods, which can struggle with the jump conditions of discrete dividends by losing accuracy or performance. Several examples demonstrate that the GIT method is highly accurate and computationally efficient, bypassing the need for extensive computational grids or complex backward induction steps.
Current browse context:
q-fin.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.