Electrical Engineering and Systems Science > Systems and Control
[Submitted on 21 Oct 2025
]
Title: Distributed Allocation and Resource Scheduling Algorithms Resilient to Link Failure
Title: 分布式分配和资源调度算法对链路故障的弹性
Abstract: Distributed resource allocation (DRA) is fundamental to modern networked systems, spanning applications from economic dispatch in smart grids to CPU scheduling in data centers. Conventional DRA approaches require reliable communication, yet real-world networks frequently suffer from link failures, packet drops, and communication delays due to environmental conditions, network congestion, and security threats. We introduce a novel resilient DRA algorithm that addresses these critical challenges, and our main contributions are as follows: (1) guaranteed constraint feasibility at all times, ensuring resource-demand balance even during algorithm termination or network disruption; (2) robust convergence despite sector-bound nonlinearities at nodes/links, accommodating practical constraints like quantization and saturation; and (3) optimal performance under merely uniformly-connected networks, eliminating the need for continuous connectivity. Unlike existing approaches that require persistent network connectivity and provide only asymptotic feasibility, our graph-theoretic solution leverages network percolation theory to maintain performance during intermittent disconnections. This makes it particularly valuable for mobile multi-agent systems where nodes frequently move out of communication range. Theoretical analysis and simulations demonstrate that our algorithm converges to optimal solutions despite heterogeneous time delays and substantial link failures, significantly advancing the reliability of distributed resource allocation in practical network environments.
Submission history
From: Mohammadreza Doostmohammadian [view email][v1] Tue, 21 Oct 2025 03:51:55 UTC (787 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.