Condensed Matter > Disordered Systems and Neural Networks
[Submitted on 21 Oct 2025
]
Title: Overparametrization bends the landscape: BBP transitions at initialization in simple Neural Networks
Title: 过参数化扭曲了景观:简单神经网络初始化时的BBP转变
Abstract: High-dimensional non-convex loss landscapes play a central role in the theory of Machine Learning. Gaining insight into how these landscapes interact with gradient-based optimization methods, even in relatively simple models, can shed light on this enigmatic feature of neural networks. In this work, we will focus on a prototypical simple learning problem, which generalizes the Phase Retrieval inference problem by allowing the exploration of overparametrized settings. Using techniques from field theory, we analyze the spectrum of the Hessian at initialization and identify a Baik-Ben Arous-P\'ech\'e (BBP) transition in the amount of data that separates regimes where the initialization is informative or uninformative about a planted signal of a teacher-student setup. Crucially, we demonstrate how overparameterization can bend the loss landscape, shifting the transition point, even reaching the information-theoretic weak-recovery threshold in the large overparameterization limit, while also altering its qualitative nature. We distinguish between continuous and discontinuous BBP transitions and support our analytical predictions with simulations, examining how they compare to the finite-N behavior. In the case of discontinuous BBP transitions strong finite-N corrections allow the retrieval of information at a signal-to-noise ratio (SNR) smaller than the predicted BBP transition. In these cases we provide estimates for a new lower SNR threshold that marks the point at which initialization becomes entirely uninformative.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.