Computer Science > Data Structures and Algorithms
[Submitted on 21 Oct 2025
]
Title: An optimal algorithm for average distance in typical regular graphs
Title: 典型正则图中平均距离的最优算法
Abstract: We design a deterministic algorithm that, given $n$ points in a \emph{typical} constant degree regular~graph, queries $O(n)$ distances to output a constant factor approximation to the average distance among those points, thus answering a question posed in~\cite{MN14}. Our algorithm uses the method of~\cite{MN14} to construct a sequence of constant degree graphs that are expanders with respect to certain nonpositively curved metric spaces, together with a new rigidity theorem for metric transforms of nonpositively curved metric spaces. The fact that our algorithm works for typical (uniformly random) constant degree regular graphs rather than for all constant degree graphs is unavoidable, thanks to the following impossibility result that we obtain: For every fixed $k\in \N$, the approximation factor of any algorithm for average distance that works for all constant degree graphs and queries $o(n^{1+1/k})$ distances must necessarily be at least $2(k+1)$. This matches the upper bound attained by the algorithm that was designed for general finite metric spaces in~\cite{BGS}. Thus, any algorithm for average distance in constant degree graphs whose approximation guarantee is less than $4$ must query $\Omega(n^2)$ distances, any such algorithm whose approximation guarantee is less than $6$ must query $\Omega(n^{3/2})$ distances, any such algorithm whose approximation guarantee less than $8$ must query $\Omega(n^{4/3})$ distances, and so forth, and furthermore there exist algorithms achieving those parameters.
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.