Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > stat > arXiv:2510.18903

Help | Advanced Search

Statistics > Methodology

arXiv:2510.18903 (stat)
[Submitted on 20 Oct 2025 ]

Title: Centered MA Dirichlet ARMA for Financial Compositions: Theory & Empirical Evidence

Title: 中心MA狄利克雷ARMA模型用于金融组成:理论与实证证据

Authors:Harrison Katz
Abstract: Observation-driven Dirichlet models for compositional time series often use the additive log-ratio (ALR) link and include a moving-average (MA) term built from ALR residuals. In the standard B--DARMA recursion, the usual MA regressor $\alr(\mathbf{Y}_t)-\boldsymbol{\eta}_t$ has nonzero conditional mean under the Dirichlet likelihood, which biases the mean path and blurs the interpretation of MA coefficients. We propose a minimal change: replace the raw regressor with a \emph{centered} innovation $\boldsymbol{\epsilon}_t^{\circ}=\alr(\mathbf{Y}_t)-\mathbb{E}\{\alr(\mathbf{Y}_t)\mid \boldsymbol{\eta}_t,\phi_t\}$, computable in closed form via digamma functions. Centering restores mean-zero innovations for the MA block without altering either the likelihood or the ALR link. We provide simple identities for the conditional mean and the forecast recursion, show first-order equivalence to a digamma-link DARMA while retaining a closed-form inverse to $\boldsymbol{\mu}_t$, and give ready-to-use code. A weekly application to the Federal Reserve H.8 bank-asset composition compares the original (raw-MA) and centered specifications under a fixed holdout and rolling one-step origins. The centered formulation improves log predictive scores with essentially identical point error and markedly cleaner Hamiltonian Monte Carlo diagnostics.
Abstract: 观测驱动的狄利克雷模型用于组成时间序列,通常使用加性对数比(ALR)链接,并包含一个由ALR残差构建的移动平均(MA)项。 在标准的B--DARMA递归中,通常的MA回归量 $\alr(\mathbf{Y}_t)-\boldsymbol{\eta}_t$在狄利克雷似然下具有非零条件均值,这会偏差均值路径并模糊MA系数的解释。 我们提出一个最小改动:用一个 \emph{中心的}创新 $\boldsymbol{\epsilon}_t^{\circ}=\alr(\mathbf{Y}_t)-\mathbb{E}\{\alr(\mathbf{Y}_t)\mid \boldsymbol{\eta}_t,\phi_t\}$替换原始回归量,可通过digamma函数以闭合形式计算。 居中处理恢复了MA块的零均值创新,而不会改变似然或ALR链接。 我们提供了条件均值和预测递归的简单恒等式,展示了与digamma链接DARMA的一阶等价性,同时保留了 $\boldsymbol{\mu}_t$的闭合形式逆,还提供了可以直接使用的代码。 对联邦储备H.8银行资产构成进行每周应用,在固定保留和滚动一步起点下比较原始(原始MA)和居中规格。 居中公式在几乎相同的点误差下提高了对数预测得分,并显著改善了哈密顿蒙特卡罗诊断。
Subjects: Methodology (stat.ME) ; Statistics Theory (math.ST); Statistical Finance (q-fin.ST)
Cite as: arXiv:2510.18903 [stat.ME]
  (or arXiv:2510.18903v1 [stat.ME] for this version)
  https://doi.org/10.48550/arXiv.2510.18903
arXiv-issued DOI via DataCite

Submission history

From: Harrison Katz [view email]
[v1] Mon, 20 Oct 2025 22:13:35 UTC (365 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
license icon view license
Current browse context:
stat.ME
< prev   |   next >
new | recent | 2025-10
Change to browse by:
math
math.ST
q-fin
q-fin.ST
stat
stat.TH

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号