Computer Science > Machine Learning
[Submitted on 22 Oct 2025
]
Title: Natural Gradient VI: Guarantees for Non-Conjugate Models
Title: 自然梯度VI:非共轭模型的保证
Abstract: Stochastic Natural Gradient Variational Inference (NGVI) is a widely used method for approximating posterior distribution in probabilistic models. Despite its empirical success and foundational role in variational inference, its theoretical underpinnings remain limited, particularly in the case of non-conjugate likelihoods. While NGVI has been shown to be a special instance of Stochastic Mirror Descent, and recent work has provided convergence guarantees using relative smoothness and strong convexity for conjugate models, these results do not extend to the non-conjugate setting, where the variational loss becomes non-convex and harder to analyze. In this work, we focus on mean-field parameterization and advance the theoretical understanding of NGVI in three key directions. First, we derive sufficient conditions under which the variational loss satisfies relative smoothness with respect to a suitable mirror map. Second, leveraging this structure, we propose a modified NGVI algorithm incorporating non-Euclidean projections and prove its global non-asymptotic convergence to a stationary point. Finally, under additional structural assumptions about the likelihood, we uncover hidden convexity properties of the variational loss and establish fast global convergence of NGVI to a global optimum. These results provide new insights into the geometry and convergence behavior of NGVI in challenging inference settings.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.