Computer Science > Computers and Society
[Submitted on 22 Oct 2025
]
Title: Cultural Dimensions of Artificial Intelligence Adoption: Empirical Insights for Wave 1 from a Multinational Longitudinal Pilot Study
Title: 人工智能采纳的文化维度:来自跨国纵向试点研究的第一波实证见解
Abstract: The swift diffusion of artificial intelligence (AI) raises critical questions about how cultural contexts shape adoption patterns and their consequences for human daily life. This study investigates the cultural dimensions of AI adoption and their influence on cognitive strategies across nine national contexts in Europe, Africa, Asia, and South America. Drawing on survey data from a diverse pilot sample (n = 21) and guided by cross-cultural psychology, digital ethics, and sociotechnical systems theory, we examine how demographic variables (age, gender, professional role) and cultural orientations (language, values, and institutional exposure) mediate perceptions of trust, ethical acceptability, and reliance on AI. Results reveal two key findings: First, cultural factors, particularly language and age, significantly affect AI adoption and perceptions of reliability with older participants reporting higher engagement with AI for educational purposes. Second, ethical judgment about AI use varied across domains, with professional contexts normalizing its role as a pragmatic collaborator while academic settings emphasized risks of plagiarism. These findings extend prior research on culture and technology adoption by demonstrating that AI use is neither universal nor neutral but culturally contingent, domain-specific, and ethically situated. The study highlights implications for AI use in education, professional practice, and global technology policy, pointing at actions that enable usage of AI in a way that is both culturally adaptive and ethically robust.
Submission history
From: Theophile Shyiramunda [view email][v1] Wed, 22 Oct 2025 16:31:28 UTC (587 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.