Computer Science > Computers and Society
[Submitted on 22 Oct 2025
]
Title: Integrating Transparent Models, LLMs, and Practitioner-in-the-Loop: A Case of Nonprofit Program Evaluation
Title: 整合透明模型、大语言模型和实践者循环:非营利项目评估的案例
Abstract: Public and nonprofit organizations often hesitate to adopt AI tools because most models are opaque even though standard approaches typically analyze aggregate patterns rather than offering actionable, case-level guidance. This study tests a practitioner-in-the-loop workflow that pairs transparent decision-tree models with large language models (LLMs) to improve predictive accuracy, interpretability, and the generation of practical insights. Using data from an ongoing college-success program, we build interpretable decision trees to surface key predictors. We then provide each tree's structure to an LLM, enabling it to reproduce case-level predictions grounded in the transparent models. Practitioners participate throughout feature engineering, model design, explanation review, and usability assessment, ensuring that field expertise informs the analysis at every stage. Results show that integrating transparent models, LLMs, and practitioner input yields accurate, trustworthy, and actionable case-level evaluations, offering a viable pathway for responsible AI adoption in the public and nonprofit sectors.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.