Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2510.20834

Help | Advanced Search

Mathematics > General Mathematics

arXiv:2510.20834 (math)
[Submitted on 14 Oct 2025 ]

Title: An ε-free rank-6 decoupling estimate for the paraboloid surface

Title: 一个无ε的六阶解耦估计对于抛物面表面

Authors:Pylyp Cherevan
Abstract: For the paraboloid decomposition $F=\sum_{\Theta} F_{\Theta}$ with $\Theta\subset{|\xi|\sim\lambda}$ and radius $r=\lambda^{-2/3}$, we prove a log-free estimate $|F|{L^{6}(Q{\lambda})}\lesssim \lambda^{\Sigma_{\lambda}} D^{\Sigma_{D}} \big(\sum_{\Theta}|F_{\Theta}|{L^{6}}^{2}\big)^{1/2}$ as $\lambda\to\infty$, where $D=\lambda^{1/12}$. Key components: (i) broad geometry of rank 3: bilipschitz behavior of normals gives $\max{i<j<k}|n_i\wedge n_j\wedge n_k|\gtrsim \lambda^{-5/4}$, which via a trilinear Kakeya-BCT insertion contributes $+5/36$ in $\lambda$; (ii) kernel estimate: twelve integrations (6 in $t$, 6 in $x^{\prime}$) and measure analysis (Schur and $TT^{}$) yield $|K|{L^2\to L^2}\lesssim \lambda^{-9/2} D^{-3}$; (iii) robust Kakeya: a density threshold $> c{} D$ brings a factor $D$ ($+1/12$ in $\lambda$, $+1$ in $D$); (iv) algebraic shell: excluding a neighborhood $N_{\beta}(P)$ contributes $-1/12$ in $\lambda$ and $-1$ in $D$; (v) tube packing: explanatory only; (vi) narrow cascade: a double $7/8$ rescaling exits the narrow regime and contributes $-5/64$ in $\lambda$ (zero in $D$). Summing exponents: $\Sigma_{\lambda}=5/36-9/2-5/64=-2557/576\approx -4.44<0$ and $\Sigma_{D}=-3+1-1=-3<0$, hence both $\lambda^{\varepsilon}$- and $D^{\varepsilon}$-losses are removed.
Abstract: 对于抛物面分解 $F=\sum_{\Theta} F_{\Theta}$ ,带有 $\Theta\subset{|\xi|\sim\lambda}$ 和半径 $r=\lambda^{-2/3}$,我们证明了一个无对数估计 $|F|{L^{6}(Q{\lambda})}\lesssim \lambda^{\Sigma_{\lambda}} D^{\Sigma_{D}} \big(\sum_{\Theta}|F_{\Theta}|{L^{6}}^{2}\big)^{1/2}$ ,如 $\lambda\to\infty$所示,其中 $D=\lambda^{1/12}$。 关键组成部分:(i) 3阶广义几何:法线的双利普希茨行为给出$\max{i<j<k}|n_i\wedge n_j\wedge n_k|\gtrsim \lambda^{-5/4}$,通过三线性Kakeya-BCT插入在$\lambda$中贡献$+5/36$;(ii) 核估计:十二次积分(6次在$t$,6次在$x^{\prime}$)和测度分析(Schur和$TT^{}$)产生$|K|{L^2\to L^2}\lesssim \lambda^{-9/2} D^{-3}$;(iii) 鲁棒Kakeya:密度阈值$> c{} D$带来因子$D$(在$\lambda$中$+1/12$,在$D$中$+1$);(iv) 代数壳:排除一个邻域$N_{\beta}(P)$在$\lambda$中贡献$-1/12$并在$D$中贡献$-1$;(v) 管道包装:仅作解释;(vi) 窄级联:一个双重$7/8$缩放退出窄区域并在$\lambda$中贡献$-5/64$(在$D$中为零)。 指数相加:$\Sigma_{\lambda}=5/36-9/2-5/64=-2557/576\approx -4.44<0$和$\Sigma_{D}=-3+1-1=-3<0$,因此两者$\lambda^{\varepsilon}$- 和$D^{\varepsilon}$-损失都被移除。
Comments: 38 pages, 0 figures
Subjects: General Mathematics (math.GM)
MSC classes: 5Q30, 76D05, 42B20
Cite as: arXiv:2510.20834 [math.GM]
  (or arXiv:2510.20834v1 [math.GM] for this version)
  https://doi.org/10.48550/arXiv.2510.20834
arXiv-issued DOI via DataCite

Submission history

From: Pylyp Cherevan [view email]
[v1] Tue, 14 Oct 2025 06:34:05 UTC (34 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
view license
Current browse context:
math.GM
< prev   |   next >
new | recent | 2025-10
Change to browse by:
math

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号