Computer Science > Machine Learning
            [Submitted on 28 Oct 2025
            
            
            
            ]
          
          Title: EddyFormer: Accelerated Neural Simulations of Three-Dimensional Turbulence at Scale
Title: EddyFormer:大规模三维湍流的加速神经模拟
Abstract: Computationally resolving turbulence remains a central challenge in fluid dynamics due to its multi-scale interactions. Fully resolving large-scale turbulence through direct numerical simulation (DNS) is computationally prohibitive, motivating data-driven machine learning alternatives. In this work, we propose EddyFormer, a Transformer-based spectral-element (SEM) architecture for large-scale turbulence simulation that combines the accuracy of spectral methods with the scalability of the attention mechanism. We introduce an SEM tokenization that decomposes the flow into grid-scale and subgrid-scale components, enabling capture of both local and global features. We create a new three-dimensional isotropic turbulence dataset and train EddyFormer to achieves DNS-level accuracy at 256^3 resolution, providing a 30x speedup over DNS. When applied to unseen domains up to 4x larger than in training, EddyFormer preserves accuracy on physics-invariant metrics-energy spectra, correlation functions, and structure functions-showing domain generalization. On The Well benchmark suite of diverse turbulent flows, EddyFormer resolves cases where prior ML models fail to converge, accurately reproducing complex dynamics across a wide range of physical conditions.
Bibliographic and Citation Tools
            Bibliographic Explorer (What is the Explorer?)
          
        
            Connected Papers (What is Connected Papers?)
          
        
            Litmaps (What is Litmaps?)
          
        
            scite Smart Citations (What are Smart Citations?)
          
        Code, Data and Media Associated with this Article
            alphaXiv (What is alphaXiv?)
          
        
            CatalyzeX Code Finder for Papers (What is CatalyzeX?)
          
        
            DagsHub (What is DagsHub?)
          
        
            Gotit.pub (What is GotitPub?)
          
        
            Hugging Face (What is Huggingface?)
          
        
            Papers with Code (What is Papers with Code?)
          
        
            ScienceCast (What is ScienceCast?)
          
        Demos
Recommenders and Search Tools
              Influence Flower (What are Influence Flowers?)
            
          
              CORE Recommender (What is CORE?)
            
          
              IArxiv Recommender
              (What is IArxiv?)
            
          arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.
 
               
  