Quantum Physics
[Submitted on 28 Oct 2025
(v1)
, last revised 29 Oct 2025 (this version, v2)]
Title: Distinct Types of Parent Hamiltonians for Quantum States: Insights from the $W$ State as a Quantum Many-Body Scar
Title: 量子态的不同类型的母哈密顿量:从$W$态作为量子多体疤痕的见解
Abstract: The construction of parent Hamiltonians that possess a given state as their ground state is a well-studied problem. In this work, we generalize this notion by considering simple quantum states and examining the local Hamiltonians that have these states as exact eigenstates. These states often correspond to Quantum Many-Body Scars (QMBS) of their respective parent Hamiltonians. Motivated by earlier works on Hamiltonians with QMBS, in this work we formalize the differences between three distinct types of parent Hamiltonians, which differ in their decompositions into strictly local terms with the same eigenstates. We illustrate this classification using the $W$ state as the primary example, for which we rigorously derive the complete set of local parent Hamiltonians, which also allows us to establish general results such as the existence of asymptotic QMBS, and distinct dynamical signatures associated with the different parent Hamiltonian types. Finally, we derive more general results on the parent Hamiltonian types that allow us to obtain some immediate results for simple quantum states such as product states, where only a single type exists, and for short-range-entangled states, for which we identify constraints on the admissible types. Altogether, our work opens the door to classifying the rich structures and dynamical properties of parent Hamiltonians that arise from the interplay between locality and QMBS.
Submission history
From: Lei Gioia Yang [view email][v1] Tue, 28 Oct 2025 17:59:12 UTC (1,092 KB)
[v2] Wed, 29 Oct 2025 04:48:32 UTC (1,092 KB)
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.