查看 最近的 文章
给定参数$n$和$\alpha$,度量维数约减模量$k^\alpha_n(\ell_\infty)$定义为最小的$k$使得每个$n$-点度量空间可以嵌入到某个$k$-维赋范空间$X$中,其双 Lipschitz 约化不超过$\alpha$。 理论中度量嵌入的一个基本任务是获得对于所有选择的$\alpha$和$n$的$k^\alpha_n(\ell_\infty)$的精确渐进行为,其中范围$\alpha=\Theta(\log n)$具有特殊重要性。 尽管理论上的进展导致了$\alpha=\Theta(\log n)$的上界$k^{\alpha}_n(\ell_\infty) = O(\log n)$,但获得匹配的下界仍然是一个开放问题。 我们证明了对于每个常数$\beta>0$,$k^{\beta\log n}_n(\ell_\infty) = \Omega(\log n)$,从而填补了长期存在的空白,并解决了Naor在2018年国际数学家大会主题演讲中提出的问题。
Given parameters $n$ and $\alpha$, the metric dimension reduction modulus $k^\alpha_n(\ell_\infty)$ is defined as the smallest $k$ such that every $n$--point metric space can be embedded into some $k$-dimensional normed space $X$ with bi--Lipschitz distortion at most $\alpha$. A fundamental task in the theory of metric embeddings is to obtain sharp asymptotics for $k^\alpha_n(\ell_\infty)$ for all choices of $\alpha$ and $n$, with the range $\alpha=\Theta(\log n)$ bearing special importance. While advances in the theory lead to the upper bound $k^{\alpha}_n(\ell_\infty) = O(\log n)$ for $\alpha=\Theta(\log n)$, obtaining a matching lower bound has remained an open problem. We prove that $k^{\beta\log n}_n(\ell_\infty) = \Omega(\log n)$ for every constant $\beta>0$, thereby closing the long--standing gap and resolving a question from the 2018 ICM plenary lecture of Naor.
在本文中,我们将相对于Kobayashi距离的可视性概念扩展到任意复流形中的区域。这里的可视性指的是类似于Eberlein--O'Neill在黎曼流形意义上的可视性的性质。由于一般来说很难确定区域是否相对于Kobayashi距离是柯西完备的,因此我们在这里不作此假设。我们提供了许多可视性的充分条件。我们在一个非常一般的设置中建立了一个Wolff--Denjoy型定理作为应用。我们还探讨了在上述设置中Kobayashi双曲区域的可视性与Gromov双曲性之间的某些联系。
In this paper, we extend the notion of visibility relative to the Kobayashi distance to domains in arbitrary complex manifolds. Visibility here refers to a property resembling visibility in the sense of Eberlein--O'Neill for Riemannian manifolds. Since it is difficult, in general, to determine whether domains are Cauchy-complete with respect to the Kobayashi distance, we do not assume so here. We provide many sufficient conditions for visibility. We establish a Wolff--Denjoy-type theorem in a very general setting as an application. We also explore some connections between visibility and Gromov hyperbolicity for Kobayashi hyperbolic domains in the above setting.
修复$p>2$。 我们证明了$n$点子集在$L_p$中的欧几里得畸变是$p^3(\log n)^{\frac12+o(1)}$,因此,特别地,表明$n$点子集在$L_p$中表现出对 Bourgain 嵌入定理为任意$n$点度量空间提供的$O(\log n)$欧几里得畸变保证的渐近改进。 我们还证明了$ L_p$中每个$n$点子集的分离模数为$O(p^2\sqrt{\log n})$,这在依赖于$p$的情况下是精确的。 我们从 $ L_p$ 的有限分离模量的渐近计算(改进)中推导出,对于 $ L_p$ 的任意 $n$ 点子集 $\mathcal{C}$、任意 Banach 空间 $\mathbf{Z}$ 和任意 $1$-Lipschitz 函数 $f:\mathcal{C}\to \mathbf{Z}$,存在一个 $O(p^2\sqrt{\log n})$-Lipschitz 函数 $F:L_p\to \mathbf{Z}$ 扩展 $f$。 我们得到关于$L_p$的加倍子集的类似分离和延拓陈述。
Fix $p>2$. We prove that the Euclidean distortion of every $n$-point subset of $L_p$ is $p^3(\log n)^{\frac12+o(1)}$, thus, in particular, demonstrating that all $n$-point subsets of $L_p$ exhibit an asymptotic improvement over the $O(\log n)$ Euclidean distortion guarantee that Bourgain's embedding theorem provides for arbitrary $n$-point metric spaces. We also prove that the separation modulus of every $n$-point subset of $ L_p$ is $O(p^2\sqrt{\log n})$, which is sharp up to the dependence on $p$. We deduce from (a refinement of) this asymptotic evaluation of the finitary separation modulus of $ L_p$ that for any $n$-point subset $\mathcal{C}$ of $ L_p$, any Banach space $\mathbf{Z}$, and any $1$-Lipschitz function $f:\mathcal{C}\to \mathbf{Z}$, there exists a $O(p^2\sqrt{\log n})$-Lipschitz function $F:L_p\to \mathbf{Z}$ that extends $f$. We obtain analogous separation and extension statements for doubling subsets of $L_p$.
我们证明了一个闭的不可定向$3$-流形具有正标量曲率度量当且仅当它的定向双重覆盖具有正标量曲率度量;然而,对于每个$4\le n\le 7$,存在无限多个光滑的不可定向$n$-流形$M$,它们彼此之间不同伦,使得$M$的定向双重覆盖具有正标量曲率度量,但每一个与$M$同伦等价的闭光滑流形都不能具有正标量曲率度量。 这些例子最初由 Alpert-Balitskiy-Guth 在研究 Urysohn 宽度时引入。 为了证明不存在性结果,我们将 Schoen-Yau 的归纳下降方法扩展到不可定向流形。 我们还讨论了带宽估计和不可定向 PSC 流形的可扩大性概念。
We show that a closed non-orientable $3$-manifold admits a positive scalar curvature metric if and only if its orientation double cover does; however, for each $4\le n\le 7$, there exist infinitely many smooth non-orientable $n$-manifolds $M$ that are mutually non-homotopy equivalent, such that the orientation double cover of $M$ admits positive scalar curvature metrics, but every closed smooth manifold that is homotopy equivalent to $M$ cannot admit positive scalar curvature metrics. These examples were first introduced by Alpert-Balitskiy-Guth in the study of Urysohn widths. To prove the nonexistence result, we extend the Schoen-Yau inductive descent approach to non-orientable manifolds. We also discuss band width estimates and the notion of enlargeability for non-orientable PSC manifolds.