Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > hep-th > arXiv:2409.02315

帮助 | 高级搜索

高能物理 - 理论

arXiv:2409.02315 (hep-th)
[提交于 2024年9月3日 (v1) ,最后修订 2024年9月19日 (此版本, v2)]

标题: Revisiting the symmetry-resolved entanglement for non-invertible symmetries in $1{+}1$d conformal field theories

标题: Revisiting the symmetry-resolved entanglement for non-invertible symmetries in $1{+}1$d conformal field theories

Authors:Jared Heymann, Thomas Quella
摘要: Recently, a framework for computing the symmetry-resolved entanglement entropy for non-invertible symmetries in $1{+}1$d conformal field theories has been proposed by Saura-Bastida, Das, Sierra and Molina-Vilaplana [Phys. Rev. D109, 105026]. We revisit their theoretical setup, paying particular attention to possible contributions from the conformal boundary conditions imposed at the entangling surface -- a potential subtlety that was not addressed in the original proposal. We find that the presence of boundaries modifies the construction of projectors onto irreducible sectors, compared to what can be expected from a pure bulk approach. This is a direct consequence of the fusion algebra of non-invertible symmetries being different in the presence or absence of boundaries on which defects can end. We apply our formalism to the case of the Fibonacci category symmetry in the three-state Potts and tricritical Ising model and the Rep($S_3$) fusion category symmetry in the $SU(2)_4$ Wess-Zumino-Witten conformal field theory. We numerically corroborate our findings by simulating critical anyonic chains with these symmetries as a finite lattice substitute for the expected entanglement Hamiltonian. Our predictions for the symmetry-resolved entanglement for non-invertible symmetries seem to disagree with the recent work by Saura-Bastida et al.
摘要: Recently, a framework for computing the symmetry-resolved entanglement entropy for non-invertible symmetries in $1{+}1$d conformal field theories has been proposed by Saura-Bastida, Das, Sierra and Molina-Vilaplana [Phys. Rev. D109, 105026]. We revisit their theoretical setup, paying particular attention to possible contributions from the conformal boundary conditions imposed at the entangling surface -- a potential subtlety that was not addressed in the original proposal. We find that the presence of boundaries modifies the construction of projectors onto irreducible sectors, compared to what can be expected from a pure bulk approach. This is a direct consequence of the fusion algebra of non-invertible symmetries being different in the presence or absence of boundaries on which defects can end. We apply our formalism to the case of the Fibonacci category symmetry in the three-state Potts and tricritical Ising model and the Rep($S_3$) fusion category symmetry in the $SU(2)_4$ Wess-Zumino-Witten conformal field theory. We numerically corroborate our findings by simulating critical anyonic chains with these symmetries as a finite lattice substitute for the expected entanglement Hamiltonian. Our predictions for the symmetry-resolved entanglement for non-invertible symmetries seem to disagree with the recent work by Saura-Bastida et al.
评论: 32页,14幅图,v2;参考文献添加
主题: 高能物理 - 理论 (hep-th) ; 统计力学 (cond-mat.stat-mech); 强关联电子 (cond-mat.str-el); 数学物理 (math-ph)
引用方式: arXiv:2409.02315 [hep-th]
  (或者 arXiv:2409.02315v2 [hep-th] 对于此版本)
  https://doi.org/10.48550/arXiv.2409.02315
通过 DataCite 发表的 arXiv DOI
期刊参考: Phys. Rev. D 112, 025004 (2025)
相关 DOI: https://doi.org/10.1103/lr47-yv3j
链接到相关资源的 DOI

提交历史

来自: Jared Heymann [查看电子邮件]
[v1] 星期二, 2024 年 9 月 3 日 22:04:32 UTC (482 KB)
[v2] 星期四, 2024 年 9 月 19 日 02:02:05 UTC (515 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
hep-th
< 上一篇   |   下一篇 >
新的 | 最近的 | 2024-09
切换浏览方式为:
cond-mat
cond-mat.stat-mech
cond-mat.str-el
math
math-ph
math.MP

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号