Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:2504.01362

帮助 | 高级搜索

数学 > 代数几何

arXiv:2504.01362 (math)
[提交于 2025年4月2日 ]

标题: Macaulay2中的连接矩阵

标题: Connection Matrices in Macaulay2

Authors:Paul Görlach, Joris Koefler, Anna-Laura Sattelberger, Mahrud Sayrafi, Hendrik Schroeder, Nicolas Weiss, Francesca Zaffalon
摘要: 本文中,我们描述了 Macaulay2 软件包 ConnectionMatrices 的理论基础,并解释了如何使用它。 对于 Weyl 代数中的有限全纯秩左理想,我们实现了与某个消去项序相关的连接形式的线性偏微分方程组的计算,该消去项序依赖于选定的正权向量。 我们还实现了有理函数域上的基变换的规范变换。 我们用实例演示了所有实现的算法。
摘要: In this article, we describe the theoretical foundations of the Macaulay2 package ConnectionMatrices and explain how to use it. For a left ideal in the Weyl algebra that is of finite holonomic rank, we implement the computation of the encoded system of linear PDEs in connection form with respect to an elimination term order that depends on a chosen positive weight vector. We also implement the gauge transformation for carrying out a change of basis over the field of rational functions. We demonstrate all implemented algorithms with examples.
主题: 代数几何 (math.AG) ; 符号计算 (cs.SC)
引用方式: arXiv:2504.01362 [math.AG]
  (或者 arXiv:2504.01362v1 [math.AG] 对于此版本)
  https://doi.org/10.48550/arXiv.2504.01362
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Anna-Laura Sattelberger [查看电子邮件]
[v1] 星期三, 2025 年 4 月 2 日 05:08:45 UTC (24 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
math
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-04
切换浏览方式为:
cs
cs.SC
math.AG

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号