数学 > 组合数学
[提交于 2024年12月7日
]
标题: 拟阵的Stanley-Reisner环的Tor群
标题: Tor Groups of the Stanley-Reisner Ring of a Matroid
摘要: We introduce the Tor groups $ \mathop{Tor}_{\bullet}^{S_{\mathrm{M}}^{\circ}} \left( \mathbb{C}[\Sigma_{\mathrm{M}}], \mathbb{C} \right)_{\bullet} $ for a loopless matroid $\mathrm{M}$ as a way to study the extra relations occurring in the linear ideal of the Feichtner-Yuzvinsky presentation of the Chow ring $ A^{\bullet}(\mathrm{M}) $. This extends the definition of the Chow ring of a matroid since $ \mathop{Tor}_{0}^{S_{\mathrm{M}}^{\circ}} \left( \mathbb{C}[\Sigma_{\mathrm{M}}], \mathbb{C} \right)_{\bullet} \cong A^{\bullet}(\mathrm{M}) $. Our main tool in studying these groups is to recognize them as cohomology of the toric variety associated to the Bergman fan of the matroid. With this geometric approach, we show that these Tor groups fit into a long exact sequence arising from the matroidal flips of Adiprasito, Huh, and Katz, extending the short exact sequence in the case of Chow rings. Using this long exact sequence we give a recursive formula for the Hilbert series of the Tor algebra of a uniform matroid.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.