Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:2311.05354

帮助 | 高级搜索

数学 > 表示理论

arXiv:2311.05354 (math)
[提交于 2023年11月9日 ]

标题: 高阶Deligne--Lusztig表示的代数化 II: 奇数层次

标题: The algebraisation of higher level Deligne--Lusztig representations II: odd levels

Authors:Zhe Chen, Alexander Stasinski
摘要: 在本文中,我们研究了具有有限余数域的离散赋值环上约化群的高阶Deligne--Lusztig表示$\mathbb{F}_q$。 在以前的工作中,我们证明了,在偶数层次上,这些几何构造的表示与某些代数构造的表示同构(称为偶数层次上的代数化定理)。 在本文中,我们处理任意层次$>1$。 我们的主要结果是(1)所有层次上的代数化定理$>1$(对于$q\geq7$的符号被明确确定)。 作为推论,我们得到(2)一般高阶Deligne--Lusztig表示轨道的正则半单性以及维数公式;在证明过程中,我们给出 (3)高阶Deligne--Lusztig表示的归纳公式,以及对正则半单元素上特征公式的新的证明。
摘要: In this paper we study higher level Deligne--Lusztig representations of reductive groups over discrete valuation rings, with finite residue field $\mathbb{F}_q$. In previous work we proved that, at even levels, these geometrically constructed representations are isomorphic to certain algebraically constructed representations (referred to as the algebraisation theorem at even levels). In this paper we work with an arbitrary level $>1$. Our main result is (1) the algebraisation theorem at all levels $>1$ (with the sign being explicitly determined for $q\geq7$). As consequences, we obtain (2) the regular semisimplicity of orbits of generic higher level Deligne--Lusztig representations, and the dimension formula; in the course of the proof, we give (3) an induction formula of higher level Deligne--Lusztig representations, and a new proof of the character formula at regular semisimple elements.
评论: 21页
主题: 表示理论 (math.RT) ; 代数几何 (math.AG); 数论 (math.NT)
引用方式: arXiv:2311.05354 [math.RT]
  (或者 arXiv:2311.05354v1 [math.RT] 对于此版本)
  https://doi.org/10.48550/arXiv.2311.05354
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Zhe Chen [查看电子邮件]
[v1] 星期四, 2023 年 11 月 9 日 13:29:00 UTC (21 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
math.AG
< 上一篇   |   下一篇 >
新的 | 最近的 | 2023-11
切换浏览方式为:
math
math.NT
math.RT

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号