Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:2504.19138

帮助 | 高级搜索

数学 > 统计理论

arXiv:2504.19138 (math)
[提交于 2025年4月27日 ]

标题: 基于随机网分位数的拟蒙特卡罗置信区间

标题: Quasi-Monte Carlo confidence intervals using quantiles of randomized nets

Authors:Zexin Pan
摘要: 拟蒙特卡罗积分的最新进展表明,中值技巧显著提高了线性洗牌数字网估计量的收敛速度。 在这项工作中,我们利用此类估计量的分位数来构建具有渐近有效覆盖率的高维积分置信区间。 通过分析一类无穷可微积分函数的积分误差分布,我们证明了随着样本量的增加,误差分解为一个渐近对称的成分和一个消失的扰动,这保证了基于中位数估计量的分位数区间在名义覆盖概率下渐近捕获目标积分。
摘要: Recent advances in quasi-Monte Carlo integration have demonstrated that the median trick significantly enhances the convergence rate of linearly scrambled digital net estimators. In this work, we leverage the quantiles of such estimators to construct confidence intervals with asymptotically valid coverage for high-dimensional integrals. By analyzing the distribution of the integration error for a class of infinitely differentiable integrands, we prove that as the sample size grows, the error decomposes into an asymptotically symmetric component and a vanishing perturbation, which guarantees that a quantile-based interval for the median estimator asymptotically captures the target integral with the nominal coverage probability.
主题: 统计理论 (math.ST) ; 数值分析 (math.NA); 计算 (stat.CO)
引用方式: arXiv:2504.19138 [math.ST]
  (或者 arXiv:2504.19138v1 [math.ST] 对于此版本)
  https://doi.org/10.48550/arXiv.2504.19138
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Zexin Pan [查看电子邮件]
[v1] 星期日, 2025 年 4 月 27 日 07:25:17 UTC (149 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • HTML(实验性)
  • TeX 源代码
  • 其他格式
许可图标 查看许可
当前浏览上下文:
math.NA
< 上一篇   |   下一篇 >
新的 | 最近的 | 2025-04
切换浏览方式为:
cs
cs.NA
math
math.ST
stat
stat.CO
stat.TH

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号