Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > stat > arXiv:0705.2515

帮助 | 高级搜索

统计学 > 应用

arXiv:0705.2515 (stat)
[提交于 2007年5月17日 ]

标题: 使用贝叶斯方法的有限元模型修正

标题: Finite Element Model Updating Using Bayesian Approach

Authors:Tshilidzi Marwala, Lungile Mdlazi, Sibusiso Sibisi
摘要: 本文比较了有限元模型更新中的最大似然法和贝叶斯方法。 最大似然法采用遗传算法实现,而贝叶斯方法则采用马尔可夫链蒙特卡罗方法实现。 这些方法在一个简支梁和一个非对称H形结构上进行了测试。 结果显示,与通过最大似然法获得的有限元模型相比,贝叶斯方法得到的更新后的有限元模型预测的模态属性更加准确。 此外,发现这两种方法所需的计算负载相同。
摘要: This paper compares the Maximum-likelihood method and Bayesian method for finite element model updating. The Maximum-likelihood method was implemented using genetic algorithm while the Bayesian method was implemented using the Markov Chain Monte Carlo. These methods were tested on a simple beam and an unsymmetrical H-shaped structure. The results show that the Bayesian method gave updated finite element models that predicted more accurate modal properties than the updated finite element models obtained through the use of the Maximum-likelihood method. Furthermore, both these methods were found to require the same levels of computational loads.
评论: 7页,IMAC2004
主题: 应用 (stat.AP)
引用方式: arXiv:0705.2515 [stat.AP]
  (或者 arXiv:0705.2515v1 [stat.AP] 对于此版本)
  https://doi.org/10.48550/arXiv.0705.2515
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Tshilidzi Marwala [查看电子邮件]
[v1] 星期四, 2007 年 5 月 17 日 11:29:08 UTC (84 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • 其他格式
查看许可
当前浏览上下文:
stat.AP
< 上一篇   |   下一篇 >
新的 | 最近的 | 2007-05
切换浏览方式为:
stat

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号