Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > physics > arXiv:0709.2897

帮助 | 高级搜索

物理学 > 流体动力学

arXiv:0709.2897 (physics)
[提交于 2007年9月18日 (v1) ,最后修订 2009年2月20日 (此版本, v2)]

标题: TO_BE_TRANSLATED: Local and Nonlocal Dispersive Turbulence

标题: Local and Nonlocal Dispersive Turbulence

Authors:Jai Sukhatme, Leslie M. Smith
摘要: TO_BE_TRANSLATED: We consider the evolution of a family of 2D dispersive turbulence models. The members of this family involve the nonlinear advection of a dynamically active scalar field, the locality of the streamfunction-scalar relation is denoted by $\alpha$, with smaller $\alpha$ implying increased locality. The dispersive nature arises via a linear term whose strength is characterized by a parameter $\epsilon$. Setting $0 < \epsilon \le 1$, we investigate the interplay of advection and dispersion for differing degrees of locality. Specifically, we study the forward (inverse) transfer of enstrophy (energy) under large-scale (small-scale) random forcing. Straightforward arguments suggest that for small $\alpha$ the scalar field should consist of progressively larger eddies, while for large $\alpha$ the scalar field is expected to have a filamentary structure resulting from a stretch and fold mechanism. Confirming this, we proceed to forced/dissipative dispersive numerical experiments under weakly non-local to local conditions. For $\epsilon \sim 1$, there is quantitative agreement between non-dispersive estimates and observed slopes in the inverse energy transfer regime. On the other hand, forward enstrophy transfer regime always yields slopes that are significantly steeper than the corresponding non-dispersive estimate. Additional simulations show the scaling in the inverse regime to be sensitive to the strength of the dispersive term : specifically, as $\epsilon$ decreases, the inertial-range shortens and we also observe that the slope of the power-law decreases. On the other hand, for the same range of $\epsilon$ values, the forward regime scaling is fairly universal.
摘要: We consider the evolution of a family of 2D dispersive turbulence models. The members of this family involve the nonlinear advection of a dynamically active scalar field, the locality of the streamfunction-scalar relation is denoted by $\alpha$, with smaller $\alpha$ implying increased locality. The dispersive nature arises via a linear term whose strength is characterized by a parameter $\epsilon$. Setting $0 < \epsilon \le 1$, we investigate the interplay of advection and dispersion for differing degrees of locality. Specifically, we study the forward (inverse) transfer of enstrophy (energy) under large-scale (small-scale) random forcing. Straightforward arguments suggest that for small $\alpha$ the scalar field should consist of progressively larger eddies, while for large $\alpha$ the scalar field is expected to have a filamentary structure resulting from a stretch and fold mechanism. Confirming this, we proceed to forced/dissipative dispersive numerical experiments under weakly non-local to local conditions. For $\epsilon \sim 1$, there is quantitative agreement between non-dispersive estimates and observed slopes in the inverse energy transfer regime. On the other hand, forward enstrophy transfer regime always yields slopes that are significantly steeper than the corresponding non-dispersive estimate. Additional simulations show the scaling in the inverse regime to be sensitive to the strength of the dispersive term : specifically, as $\epsilon$ decreases, the inertial-range shortens and we also observe that the slope of the power-law decreases. On the other hand, for the same range of $\epsilon$ values, the forward regime scaling is fairly universal.
评论: TO_BE_TRANSLATED: 19 pages, 8 figures. Significantly revised with additional results
主题: 流体动力学 (physics.flu-dyn) ; 大气与海洋物理 (physics.ao-ph)
引用方式: arXiv:0709.2897 [physics.flu-dyn]
  (或者 arXiv:0709.2897v2 [physics.flu-dyn] 对于此版本)
  https://doi.org/10.48550/arXiv.0709.2897
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Jai Sukhatme [查看电子邮件]
[v1] 星期二, 2007 年 9 月 18 日 18:47:27 UTC (427 KB)
[v2] 星期五, 2009 年 2 月 20 日 09:08:27 UTC (2,495 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
physics.flu-dyn
< 上一篇   |   下一篇 >
新的 | 最近的 | 2007-09
切换浏览方式为:
physics
physics.ao-ph

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号