物理学 > 流体动力学
[提交于 2007年9月18日
(v1)
,最后修订 2009年2月20日 (此版本, v2)]
标题: TO_BE_TRANSLATED: Local and Nonlocal Dispersive Turbulence
标题: Local and Nonlocal Dispersive Turbulence
摘要: TO_BE_TRANSLATED: We consider the evolution of a family of 2D dispersive turbulence models. The members of this family involve the nonlinear advection of a dynamically active scalar field, the locality of the streamfunction-scalar relation is denoted by $\alpha$, with smaller $\alpha$ implying increased locality. The dispersive nature arises via a linear term whose strength is characterized by a parameter $\epsilon$. Setting $0 < \epsilon \le 1$, we investigate the interplay of advection and dispersion for differing degrees of locality. Specifically, we study the forward (inverse) transfer of enstrophy (energy) under large-scale (small-scale) random forcing. Straightforward arguments suggest that for small $\alpha$ the scalar field should consist of progressively larger eddies, while for large $\alpha$ the scalar field is expected to have a filamentary structure resulting from a stretch and fold mechanism. Confirming this, we proceed to forced/dissipative dispersive numerical experiments under weakly non-local to local conditions. For $\epsilon \sim 1$, there is quantitative agreement between non-dispersive estimates and observed slopes in the inverse energy transfer regime. On the other hand, forward enstrophy transfer regime always yields slopes that are significantly steeper than the corresponding non-dispersive estimate. Additional simulations show the scaling in the inverse regime to be sensitive to the strength of the dispersive term : specifically, as $\epsilon$ decreases, the inertial-range shortens and we also observe that the slope of the power-law decreases. On the other hand, for the same range of $\epsilon$ values, the forward regime scaling is fairly universal.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.