数学 > 统计理论
[提交于 2009年7月20日
]
标题: 自旋Needlets谱估计
标题: Spin Needlets Spectral Estimation
摘要: We consider the statistical analysis of random sections of a spin fibre bundle over the sphere. These may be thought of as random fields that at each point p in $S^2$ take as a value a curve (e.g. an ellipse) living in the tangent plane at that point $T_{p}S^2$, rather than a number as in ordinary situations. The analysis of such fields is strongly motivated by applications, for instance polarization experiments in Cosmology. To investigate such fields, spin needlets were recently introduced by Geller and Marinucci (2008) and Geller et al. (2008). We consider the use of spin needlets for spin angular power spectrum estimation, in the presence of noise and missing observations, and we provide Central Limit Theorem results, in the high frequency sense; we discuss also tests for bias and asymmetries with an asymptotic justification.
当前浏览上下文:
math.ST
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.