Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > cs > arXiv:0912.4649

帮助 | 高级搜索

计算机科学 > 信息论

arXiv:0912.4649 (cs)
[提交于 2009年12月23日 ]

标题: 使用信息论的思想研究蚂蚁中的“语言”和智能

标题: The use of ideas of Information Theory for studying "language" and intelligence in ants

Authors:Boris Ryabko, Zhanna Reznikova
摘要: 在本篇综述中,我们综合了长期实验研究的结果,这些研究基于信息论的基本思想,如香农熵、科莫戈罗夫复杂性以及连接信息长度($l$)和其频率$(p)$的香农方程,即 $l = - \log p$用于理性通信系统。 这种方法对于研究生物通信系统是新颖的,使我们获得了关于蚂蚁通信和智能的重要结果:i) 揭示蚂蚁的“远距离归巢”,即它们传递关于远程事件的信息的能力;ii) 估计信息传输速率;iii) 揭示蚂蚁能够掌握规律并用于信息“压缩”;iv) 揭示蚂蚁能够相互传递关于物体数量的信息;v) 发现蚂蚁能够进行加法和减法运算。 所得结果表明,信息论不仅是一门美妙的数学理论,而且许多其结果可以被视为自然法则。
摘要: In this review we integrate results of long term experimental study on ant "language" and intelligence which were fully based on fundamental ideas of Information Theory, such as the Shannon entropy, the Kolmogorov complexity, and the Shannon's equation connecting the length of a message ($l$) and its frequency $(p)$, i.e. $l = - \log p$ for rational communication systems. This approach, new for studying biological communication systems, enabled us to obtain the following important results on ants' communication and intelligence: i) to reveal "distant homing" in ants, that is, their ability to transfer information about remote events; ii) to estimate the rate of information transmission; iii) to reveal that ants are able to grasp regularities and to use them for "compression" of information; iv) to reveal that ants are able to transfer to each other the information about the number of objects; v) to discover that ants can add and subtract small numbers. The obtained results show that Information Theory is not only wonderful mathematical theory, but many its results may be considered as Nature laws.
主题: 信息论 (cs.IT) ; 人工智能 (cs.AI); 适应性与自组织系统 (nlin.AO)
引用方式: arXiv:0912.4649 [cs.IT]
  (或者 arXiv:0912.4649v1 [cs.IT] 对于此版本)
  https://doi.org/10.48550/arXiv.0912.4649
通过 DataCite 发表的 arXiv DOI
期刊参考: Entropy 2009, 11(4), 836-853
相关 DOI: https://doi.org/10.3390/e11040836
链接到相关资源的 DOI

提交历史

来自: Boris Ryabko [查看电子邮件]
[v1] 星期三, 2009 年 12 月 23 日 14:12:47 UTC (470 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
cs.IT
< 上一篇   |   下一篇 >
新的 | 最近的 | 2009-12
切换浏览方式为:
cs
cs.AI
math
math.IT
nlin
nlin.AO

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号