数学 > 数值分析
[提交于 2016年1月4日
]
标题: TO_BE_TRANSLATED: A practical criterion for the existence of optimal piecewise Chebyshevian spline bases
标题: A practical criterion for the existence of optimal piecewise Chebyshevian spline bases
摘要: TO_BE_TRANSLATED: A piecewise Chebyshevian spline space is a space of spline functions having pieces in different Extended Chebyshev spaces and where the continuity conditions between adjacent spline segments are expressed by means of connection matrices. Any such space is suitable for design purposes when it possesses an optimal basis (i.e. a totally positive basis of minimally supported splines) and when this feature is preserved under knot insertion. Therefore, when any piecewise Chebyshevian spline space where all knots have zero multiplicity enjoys the aforementioned properties, then so does any spline space with knots of arbitrary multiplicity obtained from it. In this paper, we provide a practical criterion and an effective numerical procedure to determine whether or not a given piecewise Chebyshevian spline space with knots of zero multiplicity is suitable for design. Moreover, whenever it exists, we also show how to construct the optimal basis of the space.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.