数学 > 偏微分方程分析
[提交于 2016年1月4日
(v1)
,最后修订 2017年1月6日 (此版本, v4)]
标题: TO_BE_TRANSLATED: Weak lower semicontinuity of integral functionals and applications
标题: Weak lower semicontinuity of integral functionals and applications
摘要: TO_BE_TRANSLATED: Minimization is a reoccurring theme in many mathematical disciplines ranging from pure to applied ones. Of particular importance is the minimization of integral functionals that is studied within the calculus of variations. Proofs of the existence of minimizers usually rely on a fine property of the involved functional called weak lower semicontinuity. While early studies of lower semicontinuity go back to the beginning of the 20th century the milestones of the modern theory were set by C.B. Morrey Jr. in 1952 and N.G. Meyers in 1965. We recapitulate the development on this topic from then on. Special attention is paid to signed integrands and to applications in continuum mechanics of solids. In particular, we review the concept of polyconvexity and special properties of (sub)determinants with respect to weak lower semicontinuity. Besides, we emphasize some recent progress in lower semicontinuity of functionals along sequences satisfying differential and algebraic constraints which have applications in elasticity to ensure injectivity and orientation-preservation of deformations. Finally, we outline generalization of these results to more general first-order partial differential operators and make some suggestions for further reading.
文献和引用工具
与本文相关的代码,数据和媒体
alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)
演示
推荐器和搜索工具
arXivLabs:与社区合作伙伴的实验项目
arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。
与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。
有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.