Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:1601.00390v4

帮助 | 高级搜索

数学 > 偏微分方程分析

arXiv:1601.00390v4 (math)
[提交于 2016年1月4日 (v1) ,最后修订 2017年1月6日 (此版本, v4)]

标题: TO_BE_TRANSLATED: Weak lower semicontinuity of integral functionals and applications

标题: Weak lower semicontinuity of integral functionals and applications

Authors:Barbora Benešová, Martin Kružík
摘要: TO_BE_TRANSLATED: Minimization is a reoccurring theme in many mathematical disciplines ranging from pure to applied ones. Of particular importance is the minimization of integral functionals that is studied within the calculus of variations. Proofs of the existence of minimizers usually rely on a fine property of the involved functional called weak lower semicontinuity. While early studies of lower semicontinuity go back to the beginning of the 20th century the milestones of the modern theory were set by C.B. Morrey Jr. in 1952 and N.G. Meyers in 1965. We recapitulate the development on this topic from then on. Special attention is paid to signed integrands and to applications in continuum mechanics of solids. In particular, we review the concept of polyconvexity and special properties of (sub)determinants with respect to weak lower semicontinuity. Besides, we emphasize some recent progress in lower semicontinuity of functionals along sequences satisfying differential and algebraic constraints which have applications in elasticity to ensure injectivity and orientation-preservation of deformations. Finally, we outline generalization of these results to more general first-order partial differential operators and make some suggestions for further reading.
摘要: Minimization is a reoccurring theme in many mathematical disciplines ranging from pure to applied ones. Of particular importance is the minimization of integral functionals that is studied within the calculus of variations. Proofs of the existence of minimizers usually rely on a fine property of the involved functional called weak lower semicontinuity. While early studies of lower semicontinuity go back to the beginning of the 20th century the milestones of the modern theory were set by C.B. Morrey Jr. in 1952 and N.G. Meyers in 1965. We recapitulate the development on this topic from then on. Special attention is paid to signed integrands and to applications in continuum mechanics of solids. In particular, we review the concept of polyconvexity and special properties of (sub)determinants with respect to weak lower semicontinuity. Besides, we emphasize some recent progress in lower semicontinuity of functionals along sequences satisfying differential and algebraic constraints which have applications in elasticity to ensure injectivity and orientation-preservation of deformations. Finally, we outline generalization of these results to more general first-order partial differential operators and make some suggestions for further reading.
主题: 偏微分方程分析 (math.AP)
MSC 类: 49-02, 49J45, 49S05
引用方式: arXiv:1601.00390 [math.AP]
  (或者 arXiv:1601.00390v4 [math.AP] 对于此版本)
  https://doi.org/10.48550/arXiv.1601.00390
通过 DataCite 发表的 arXiv DOI
期刊参考: SIAM Review 59 (2017), 703-766
相关 DOI: https://doi.org/10.1137/16M1060947
链接到相关资源的 DOI

提交历史

来自: Martin Kružík [查看电子邮件]
[v1] 星期一, 2016 年 1 月 4 日 06:35:27 UTC (395 KB)
[v2] 星期二, 2016 年 2 月 9 日 16:27:46 UTC (420 KB)
[v3] 星期六, 2016 年 10 月 15 日 06:50:58 UTC (442 KB)
[v4] 星期五, 2017 年 1 月 6 日 15:28:07 UTC (442 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
math.AP
< 上一篇   |   下一篇 >
新的 | 最近的 | 2016-01
切换浏览方式为:
math

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号