Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:1607.00248

帮助 | 高级搜索

数学 > 组合数学

arXiv:1607.00248 (math)
[提交于 2016年7月1日 ]

标题: 网格状和环状图中的支配序列

标题: Dominating sequences in grid-like and toroidal graphs

Authors:Boštjan Brešar, Csilla Bujtás, Tanja Gologranc, Sandi Klavžar, Gašper Košmrlj, Balázs Patkós, Zsolt Tuza, Máté Vizer
摘要: 一个最长序列$S$的不同顶点的图$G$,使得每个顶点$S$支配某个顶点,该顶点不被其前驱顶点支配,称为Grundy支配序列;$S$的长度是$G$的Grundy支配数。 在本文中,我们研究了四个标准图积中的Grundy支配数:笛卡尔积、字典积、直接积和强积。 对于每种积,我们给出了Grundy支配数的下界,结果发现对于字典积是精确的,对于强积则是一个猜想。 在大多数情况下,确定了路径和/或环的积的精确Grundy支配数。
摘要: A longest sequence $S$ of distinct vertices of a graph $G$ such that each vertex of $S$ dominates some vertex that is not dominated by its preceding vertices, is called a Grundy dominating sequence; the length of $S$ is the Grundy domination number of $G$. In this paper we study the Grundy domination number in the four standard graph products: the Cartesian, the lexicographic, the direct, and the strong product. For each of the products we present a lower bound for the Grundy domination number which turns out to be exact for the lexicographic product and is conjectured to be exact for the strong product. In most of the cases exact Grundy domination numbers are determined for products of paths and/or cycles.
评论: 17页 3图
主题: 组合数学 (math.CO)
MSC 类: 05C69, 05C76
引用方式: arXiv:1607.00248 [math.CO]
  (或者 arXiv:1607.00248v1 [math.CO] 对于此版本)
  https://doi.org/10.48550/arXiv.1607.00248
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Tanja Gologranc [查看电子邮件]
[v1] 星期五, 2016 年 7 月 1 日 13:51:23 UTC (18 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
math.CO
< 上一篇   |   下一篇 >
新的 | 最近的 | 2016-07
切换浏览方式为:
math

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号