Skip to main content
CenXiv.org
此网站处于试运行阶段,支持我们!
我们衷心感谢所有贡献者的支持。
贡献
赞助
cenxiv logo > math > arXiv:2010.00063

帮助 | 高级搜索

数学 > 组合数学

arXiv:2010.00063 (math)
[提交于 2020年9月30日 ]

标题: 距离到聚类的冲突-free着色的紧界

标题: A Tight Bound for Conflict-free Coloring in terms of Distance to Cluster

Authors:Sriram Bhyravarapu, Subrahmanyam Kalyanasundaram
摘要: 给定一个无向图$G = (V,E)$,相对于开邻域的冲突自由着色(CFON着色)是一种顶点着色,使得每个顶点在其开邻域中都有一个独特着色的顶点。 进行这种着色所需的最小颜色数是$G$的 CFON色数,记为$\chi_{ON}(G)$。 在之前的工作 [WG 2020] 中,我们证明了上界$\chi_{ON}(G) \leq dc(G) + 3$,其中$dc(G)$表示$G$的聚类距离参数。 在本文中,我们得到了改进的上界$\chi_{ON}(G) \leq dc(G) + 1$。 我们还展示了一类图,其中$\chi_{ON}(G) > dc(G)$,从而证明了我们的上界是紧的。
摘要: Given an undirected graph $G = (V,E)$, a conflict-free coloring with respect to open neighborhoods (CFON coloring) is a vertex coloring such that every vertex has a uniquely colored vertex in its open neighborhood. The minimum number of colors required for such a coloring is the CFON chromatic number of $G$, denoted by $\chi_{ON}(G)$. In previous work [WG 2020], we showed the upper bound $\chi_{ON}(G) \leq dc(G) + 3$, where $dc(G)$ denotes the distance to cluster parameter of $G$. In this paper, we obtain the improved upper bound of $\chi_{ON}(G) \leq dc(G) + 1$. We also exhibit a family of graphs for which $\chi_{ON}(G) > dc(G)$, thereby demonstrating that our upper bound is tight.
评论: 29页
主题: 组合数学 (math.CO)
引用方式: arXiv:2010.00063 [math.CO]
  (或者 arXiv:2010.00063v1 [math.CO] 对于此版本)
  https://doi.org/10.48550/arXiv.2010.00063
通过 DataCite 发表的 arXiv DOI

提交历史

来自: Subrahmanyam Kalyanasundaram [查看电子邮件]
[v1] 星期三, 2020 年 9 月 30 日 19:10:31 UTC (31 KB)
全文链接:

获取论文:

    查看标题为《》的 PDF
  • 查看中文 PDF
  • 查看 PDF
  • TeX 源代码
  • 其他格式
查看许可
当前浏览上下文:
math.CO
< 上一篇   |   下一篇 >
新的 | 最近的 | 2020-10
切换浏览方式为:
math

参考文献与引用

  • NASA ADS
  • 谷歌学术搜索
  • 语义学者
a 导出 BibTeX 引用 加载中...

BibTeX 格式的引用

×
数据由提供:

收藏

BibSonomy logo Reddit logo

文献和引用工具

文献资源探索 (什么是资源探索?)
连接的论文 (什么是连接的论文?)
Litmaps (什么是 Litmaps?)
scite 智能引用 (什么是智能引用?)

与本文相关的代码,数据和媒体

alphaXiv (什么是 alphaXiv?)
CatalyzeX 代码查找器 (什么是 CatalyzeX?)
DagsHub (什么是 DagsHub?)
Gotit.pub (什么是 GotitPub?)
Hugging Face (什么是 Huggingface?)
带有代码的论文 (什么是带有代码的论文?)
ScienceCast (什么是 ScienceCast?)

演示

复制 (什么是复制?)
Hugging Face Spaces (什么是 Spaces?)
TXYZ.AI (什么是 TXYZ.AI?)

推荐器和搜索工具

影响之花 (什么是影响之花?)
核心推荐器 (什么是核心?)
IArxiv 推荐器 (什么是 IArxiv?)
  • 作者
  • 地点
  • 机构
  • 主题

arXivLabs:与社区合作伙伴的实验项目

arXivLabs 是一个框架,允许合作伙伴直接在我们的网站上开发和分享新的 arXiv 特性。

与 arXivLabs 合作的个人和组织都接受了我们的价值观,即开放、社区、卓越和用户数据隐私。arXiv 承诺这些价值观,并且只与遵守这些价值观的合作伙伴合作。

有一个为 arXiv 社区增加价值的项目想法吗? 了解更多关于 arXivLabs 的信息.

这篇论文的哪些作者是支持者? | 禁用 MathJax (什么是 MathJax?)
  • 关于
  • 帮助
  • contact arXivClick here to contact arXiv 联系
  • 订阅 arXiv 邮件列表点击这里订阅 订阅
  • 版权
  • 隐私政策
  • 网络无障碍帮助
  • arXiv 运营状态
    通过...获取状态通知 email 或者 slack

京ICP备2025123034号